These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30869861)

  • 1. Growth Mechanism of Five-Fold Twinned Ag Nanowires from Multiscale Theory and Simulations.
    Qi X; Chen Z; Yan T; Fichthorn KA
    ACS Nano; 2019 Apr; 13(4):4647-4656. PubMed ID: 30869861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion growth mechanism of penta-twinned Ag nanocrystals from decahedral seeds.
    Cui J; Phul S; Fichthorn KA
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37093141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Solution-Phase Growth of Cu and Ag Nanowires and Nanocubes from First Principles.
    Fichthorn KA; Chen Z; Chen Z; Rioux RM; Kim MJ; Wiley BJ
    Langmuir; 2021 Apr; 37(15):4419-4431. PubMed ID: 33834786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-Phase Growth of Cu Nanowires with Aspect Ratios Greater Than 1000: Multiscale Theory.
    Kim J; Cui J; Fichthorn KA
    ACS Nano; 2021 Nov; 15(11):18279-18288. PubMed ID: 34739221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Copper Nanowires Grow and How To Control Their Properties.
    Ye S; Stewart IE; Chen Z; Li B; Rathmell AR; Wiley BJ
    Acc Chem Res; 2016 Mar; 49(3):442-51. PubMed ID: 26872359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism.
    Kuo CL; Hwang KC
    Langmuir; 2012 Feb; 28(8):3722-9. PubMed ID: 22304018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications.
    Yang HJ; He SY; Tuan HY
    Langmuir; 2014 Jan; 30(2):602-10. PubMed ID: 24367924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Pot Synthesis of Penta-twinned Palladium Nanowires and Their Enhanced Electrocatalytic Properties.
    Huang H; Ruditskiy A; Choi SI; Zhang L; Liu J; Ye Z; Xia Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31203-31212. PubMed ID: 28825463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.
    Glynn C; McNulty D; Geaney H; O'Dwyer C
    Small; 2016 Nov; 12(43):5954-5962. PubMed ID: 27622769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and optical properties of silver nanowires and silver-nanowire thin films.
    Luu QN; Doorn JM; Berry MT; Jiang C; Lin C; May PS
    J Colloid Interface Sci; 2011 Apr; 356(1):151-8. PubMed ID: 21276588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A universal route with fine kinetic control to a family of penta-twinned gold nanocrystals.
    Zhang T; Li X; Sun Y; Liu D; Li C; Cai W; Li Y
    Chem Sci; 2021 Oct; 12(38):12631-12639. PubMed ID: 34703548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forest of gold nanowires: a new type of nanocrystal growth.
    He J; Wang Y; Feng Y; Qi X; Zeng Z; Liu Q; Teo WS; Gan CL; Zhang H; Chen H
    ACS Nano; 2013 Mar; 7(3):2733-40. PubMed ID: 23442034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length-dependent dual-mechanism-controlled failure modes in silver penta-twinned nanowires.
    Liang T; Zhou D; Wu Z; Shi P; Chen X
    Nanoscale; 2018 Nov; 10(44):20565-20577. PubMed ID: 30226511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires.
    Ye S; Rathmell AR; Ha YC; Wilson AR; Wiley BJ
    Small; 2014 May; 10(9):1771-8. PubMed ID: 24616369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organized Ce(1-x)Gd(x)O(2-y) nanowire networks with very fast coarsening driven by attractive elastic interactions.
    Gibert M; Abellán P; Benedetti A; Puig T; Sandiumenge F; García A; Obradors X
    Small; 2010 Dec; 6(23):2716-24. PubMed ID: 21064087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures.
    Velázquez-Salazar JJ; Esparza R; Mejía-Rosales SJ; Estrada-Salas R; Ponce A; Deepak FL; Castro-Guerrero C; José-Yacamán M
    ACS Nano; 2011 Aug; 5(8):6272-8. PubMed ID: 21790155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Crystal Electrochemistry Reveals Why Metal Nanowires Grow.
    Kim MJ; Alvarez S; Chen Z; Fichthorn KA; Wiley BJ
    J Am Chem Soc; 2018 Nov; 140(44):14740-14746. PubMed ID: 30351013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Synthesis of Ag Nanorods with No Plasmon Resonance Peak in the Visible Region by Using Pd Decahedra of 16 nm in Size as Seeds.
    Luo M; Huang H; Choi SI; Zhang C; da Silva RR; Peng HC; Li ZY; Liu J; He Z; Xia Y
    ACS Nano; 2015 Oct; 9(10):10523-32. PubMed ID: 26372854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.