These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30869891)

  • 1. Electrostatic Spectral Tuning Maps for Biological Chromophores.
    Orozco-Gonzalez Y; Kabir MP; Gozem S
    J Phys Chem B; 2019 Jun; 123(23):4813-4824. PubMed ID: 30869891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic spectral tuning mechanism of the green fluorescent protein.
    Kaila VR; Send R; Sundholm D
    Phys Chem Chem Phys; 2013 Apr; 15(13):4491-5. PubMed ID: 23420178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores.
    Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A
    J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The key to the yellow-to-cyan tuning in the green fluorescent protein family is polarisation.
    Nifosì R; Mennucci B; Filippi C
    Phys Chem Chem Phys; 2019 Sep; 21(35):18988-18998. PubMed ID: 31464320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects.
    Ashworth EK; Stockett MH; Kjær C; Bulman Page PC; Meech SR; Nielsen SB; Bull JN
    J Phys Chem A; 2022 Feb; 126(7):1158-1167. PubMed ID: 35138862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water.
    Zuehlsdorff TJ; Napoli JA; Milanese JM; Markland TE; Isborn CM
    J Chem Phys; 2018 Jul; 149(2):024107. PubMed ID: 30007372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emission shaping in fluorescent proteins: role of electrostatics and π-stacking.
    Park JW; Rhee YM
    Phys Chem Chem Phys; 2016 Feb; 18(5):3944-55. PubMed ID: 26771034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant.
    Bose S; Chakrabarty S; Ghosh D
    J Phys Chem B; 2016 May; 120(19):4410-20. PubMed ID: 27116477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromophore-protein coupling beyond nonpolarizable models: understanding absorption in green fluorescent protein.
    Daday C; Curutchet C; Sinicropi A; Mennucci B; Filippi C
    J Chem Theory Comput; 2015 Oct; 11(10):4825-39. PubMed ID: 26574271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodetachment spectra of deprotonated fluorescent protein chromophore anions.
    Mooney CR; Sanz ME; McKay AR; Fitzmaurice RJ; Aliev AE; Caddick S; Fielding HH
    J Phys Chem A; 2012 Aug; 116(30):7943-9. PubMed ID: 22738202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant.
    Augustine G; Raghavan S; NumbiRamudu K; Easwaramoorthi S; Shanmugam G; Seetharani Murugaiyan J; Gunasekaran K; Govind C; Karunakaran V; Ayyadurai N
    J Phys Chem B; 2019 Mar; 123(10):2316-2324. PubMed ID: 30789731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of chromophore excited state energy shifts in response to molecular dynamics of pigment-protein complexes.
    Vassiliev S; Mahboob A; Bruce D
    Photosynth Res; 2011 Oct; 110(1):25-38. PubMed ID: 21964859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Hydrogen Bonds and Electrostatic Interactions in Enhancing Two-Photon Absorption in Green and Yellow Fluorescent Proteins.
    Grabarek D; Andruniów T
    Chemphyschem; 2022 Apr; 23(7):e202200003. PubMed ID: 35130370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculating absorption shifts for retinal proteins: computational challenges.
    Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M
    J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling spectral tuning in monomeric teal fluorescent protein mTFP1.
    Topol I; Collins J; Nemukhin A
    Biophys Chem; 2010 Jul; 149(3):78-82. PubMed ID: 20442006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore.
    Lin CY; Boxer SG
    J Am Chem Soc; 2020 Jun; 142(25):11032-11041. PubMed ID: 32453950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method.
    Shen C; Jin X; Glover WJ; He X
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.