BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30869908)

  • 1. Electrosynthesis of ( E)-Vinyl Thiocyanates from Cinnamic Acids via Decarboxylative Coupling Reaction.
    Yang SM; He TJ; Lin DZ; Huang JM
    Org Lett; 2019 Apr; 21(7):1958-1962. PubMed ID: 30869908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Decarboxylative Sulfonylation of Cinnamic Acids with Aromatic Sulfonylhydrazides to Vinyl Sulfones.
    Zhao Y; Lai YL; Du KS; Lin DZ; Huang JM
    J Org Chem; 2017 Sep; 82(18):9655-9661. PubMed ID: 28853571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K
    Gu Q; Wang Q; Dai W; Wang X; Ban Y; Liu T; Zhao Y; Zhang Y; Ling Y; Zeng X
    Org Biomol Chem; 2021 Mar; 19(11):2512-2516. PubMed ID: 33662088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrosynthesis of (E)-Vinyl Sulfones Directly from Cinnamic Acids and Sodium Sulfinates via Decarboxylative Sulfono Functionalization.
    Qian P; Bi M; Su J; Zha Z; Wang Z
    J Org Chem; 2016 Jun; 81(11):4876-82. PubMed ID: 27175916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical thiocyanation of barbituric acids.
    Bityukov OV; Kirillov AS; Serdyuchenko PY; Kuznetsova MA; Demidova VN; Vil' VA; Terent'ev AO
    Org Biomol Chem; 2022 May; 20(17):3629-3636. PubMed ID: 35420113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of alpha,omega-diarylbutadienes and -hexatrienes via decarboxylative coupling of cinnamic acids with vinyl bromides under palladium catalysis.
    Yamashita M; Hirano K; Satoh T; Miura M
    Org Lett; 2010 Feb; 12(3):592-5. PubMed ID: 20039617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible-Light-Enabled Decarboxylative Sulfonylation of Cinnamic Acids with Sulfonylhydrazides under Transition-Metal-Free Conditions.
    Cai S; Xu Y; Chen D; Li L; Chen Q; Huang M; Weng W
    Org Lett; 2016 Jun; 18(12):2990-3. PubMed ID: 27268708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Direct Metal-Free Decarboxylative Sulfono Functionalization (DSF) of Cinnamic Acids to α,β-Unsaturated Phenyl Sulfones.
    Singh R; Allam BK; Singh N; Kumari K; Singh SK; Singh KN
    Org Lett; 2015 Jun; 17(11):2656-9. PubMed ID: 25954832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress of direct thiocyanation reactions.
    Chen H; Shi X; Liu X; Zhao L
    Org Biomol Chem; 2022 Aug; 20(33):6508-6527. PubMed ID: 35942781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-light-induced decarboxylative sulfonylation of cinnamic acids with sodium sulfinates by using Merrifield resin supported Rose Bengal as a catalyst.
    Li P; Wang GW
    Org Biomol Chem; 2019 Jun; 17(22):5578-5585. PubMed ID: 31114832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanochemical Thiocyanation of Aryl Compounds
    de Oliveira Lima Filho E; Malvestiti I
    ACS Omega; 2020 Dec; 5(51):33329-33339. PubMed ID: 33403295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium-Catalyzed Decarboxylative C-H Alkenylation in Aqueous Media: Synthesis of Tetrahydropyridoindoles.
    Jin XY; Xie LJ; Cheng HP; Liu AD; Li XD; Wang D; Cheng L; Liu L
    J Org Chem; 2018 Jul; 83(14):7514-7522. PubMed ID: 29697256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regioselective palladium-catalyzed decarboxylative cross-coupling reaction of alkenyl acids with coumarins: synthesis of 3-styrylcoumarin compounds.
    Wang X; Li SY; Pan YM; Wang HS; Chen ZF; Huang KB
    J Org Chem; 2015 Feb; 80(4):2407-12. PubMed ID: 25611673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advancement on the Indirect or Combined Alternative Thiocyanate Sources for the Construction of S-CN Bonds.
    Karmaker PG; Yang X
    Chem Rec; 2024 Mar; 24(3):e202300312. PubMed ID: 38085121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron Donor-Acceptor Complex Enabled Decarboxylative Sulfonylation of Cinnamic Acids under Visible-Light Irradiation.
    Ge QQ; Qian JS; Xuan J
    J Org Chem; 2019 Jul; 84(13):8691-8701. PubMed ID: 31199136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An environmentally benign way to synthesize 2-thiocyano-1,3-dicarbonyl compounds with high antifungal activity: a key role of solvent.
    Kirillov AS; Semenov EA; Bityukov OV; Kuznetsova MA; Demidova VN; Rogozhin AN; Glinushkin AP; Vil' VA; Terent'ev AO
    Org Biomol Chem; 2023 May; 21(17):3615-3622. PubMed ID: 37057616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mild copper-catalyzed aerobic oxidative thiocyanation of arylboronic acids with TMSNCS.
    Sun N; Che L; Mo W; Hu B; Shen Z; Hu X
    Org Biomol Chem; 2015 Jan; 13(3):691-6. PubMed ID: 25514847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unprecedented Pd-catalyzed decarboxylative coupling reaction of aromatic carboxylic acids in aqueous medium under air: synthesis of 3-aryl-imidazo[1,2-a]pyridines from aryl chlorides.
    Mu B; Wu Y; Li J; Zou D; Chang J; Wu Y
    Org Biomol Chem; 2016 Jan; 14(1):246-50. PubMed ID: 26566049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of vinyl sulfides by copper-catalyzed decarboxylative C-S cross-coupling.
    Ranjit S; Duan Z; Zhang P; Liu X
    Org Lett; 2010 Sep; 12(18):4134-6. PubMed ID: 20726572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoenzymatic Hunsdiecker-Type Decarboxylative Bromination of Cinnamic Acids.
    Li H; Younes SHH; Chen S; Duan P; Cui C; Wever R; Zhang W; Hollmann F
    ACS Catal; 2022 Apr; 12(8):4554-4559. PubMed ID: 35465241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.