These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 30870429)

  • 1. Expression regulation of myo-inositol 3-phosphate synthase 1 (INO1) in determination of phytic acid accumulation in rice grain.
    Perera I; Fukushima A; Akabane T; Horiguchi G; Seneweera S; Hirotsu N
    Sci Rep; 2019 Oct; 9(1):14866. PubMed ID: 31619750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1.
    Raboy V; Gerbasi PF; Young KA; Stoneberg SD; Pickett SG; Bauman AT; Murthy PP; Sheridan WF; Ertl DS
    Plant Physiol; 2000 Sep; 124(1):355-68. PubMed ID: 10982449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice ins(3)P synthase1 (RINO1) participates in embryonic development by regulating inositol-associated changes in auxin synthesis and its distribution.
    Zhou L; Xiong Y; Asad MA; Guan X; Zhang Y; Su D; Pan G; Cheng F
    Physiol Plant; 2024; 176(2):e14256. PubMed ID: 38531421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability.
    Perera I; Seneweera S; Hirotsu N
    Rice (N Y); 2018 Jan; 11(1):4. PubMed ID: 29327163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of phytic acid from rice bran combined with sodium erythorbate as antioxidants in chicken mortadella.
    Canan C; Kalschne DL; Corso MP; Cursino ACT; Drunkler DA; Cardoso FAR; Bittencourt PRS; Ida EI
    Food Chem; 2024 Oct; 456():139957. PubMed ID: 38870808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants.
    Shunmugam AS; Bock C; Arganosa GC; Georges F; Gray GR; Warkentin TD
    Plants (Basel); 2014 Dec; 4(1):1-26. PubMed ID: 27135314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeds with low phosphorus content: not so bad after all?
    Vetterlein D; Tarkka M
    J Exp Bot; 2018 Oct; 69(21):4993-4996. PubMed ID: 30312462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical assessment of wheat biofortification for iron and zinc: a comprehensive review of conceptualization, trends, approaches, bioavailability, health impact, and policy framework.
    Gupta OP; Singh A; Pandey V; Sendhil R; Khan MK; Pandey A; Kumar S; Hamurcu M; Ram S; Singh G
    Front Nutr; 2023; 10():1310020. PubMed ID: 38239835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of an Allelic Variant of the
    Kishor DS; Lee HY; Alavilli H; You CR; Kim JG; Lee SY; Kang BC; Song K
    Front Plant Sci; 2021; 12():802864. PubMed ID: 35003192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating a genome-wide association study with transcriptomic data to predict candidate genes and favourable haplotypes influencing Brassica napus seed phytate.
    Liu H; Li X; Zhang Q; Yuan P; Liu L; King GJ; Ding G; Wang S; Cai H; Wang C; Xu F; Shi L
    DNA Res; 2021 Sep; 28(5):. PubMed ID: 34514497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
    Gupta PK; Balyan HS; Sharma S; Kumar R
    Theor Appl Genet; 2021 Jan; 134(1):1-35. PubMed ID: 33136168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review.
    Omoruyi FO; Stennett D; Foster S; Dilworth L
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32290029
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Raboy V
    Plants (Basel); 2020 Jan; 9(2):. PubMed ID: 31979164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can Inositol Pyrophosphates Inform Strategies for Developing Low Phytate Crops?
    Freed C; Adepoju O; Gillaspy G
    Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31963418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.).
    Kishor DS; Lee C; Lee D; Venkatesh J; Seo J; Chin JH; Jin Z; Hong SK; Ham JK; Koh HJ
    PLoS One; 2019; 14(3):e0209636. PubMed ID: 30870429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK.
    Kim SI; Andaya CB; Newman JW; Goyal SS; Tai TH
    Theor Appl Genet; 2008 Nov; 117(8):1291-301. PubMed ID: 18726583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism.
    Kim SI; Andaya CB; Goyal SS; Tai TH
    Theor Appl Genet; 2008 Sep; 117(5):769-79. PubMed ID: 18566795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.).
    Liu QL; Xu XH; Ren XL; Fu HW; Wu DX; Shu QY
    Theor Appl Genet; 2007 Mar; 114(5):803-14. PubMed ID: 17219209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet.
    Silva VM; Putti FF; White PJ; Reis ARD
    Plant Physiol Biochem; 2021 Jul; 164():132-146. PubMed ID: 33991859
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.