These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30870594)

  • 1. Elucidating the Role of Sulfide on the Stability of Ferrihydrite Colloids under Anoxic Conditions.
    He L; Xie L; Wang D; Li W; Fortner JD; Li Q; Duan Y; Shi Z; Liao P; Liu C
    Environ Sci Technol; 2019 Apr; 53(8):4173-4184. PubMed ID: 30870594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.
    Liao P; Yuan S; Wang D
    Environ Sci Technol; 2016 Oct; 50(20):10968-10977. PubMed ID: 27654458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite.
    Zhao Z; Wang S; Jia Y
    Chemosphere; 2017 Oct; 185():321-328. PubMed ID: 28704663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloid-mediated transport of tetracycline in saturated porous media: Comparison between ferrihydrite and montmorillonite.
    Wang M; Zhang Q; Lu T; Chen J; Wei Q; Chen W; Zhou Y; Qi Z
    J Environ Manage; 2021 Dec; 299():113638. PubMed ID: 34488115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions.
    Liao P; Li W; Wang D; Jiang Y; Pan C; Fortner JD; Yuan S
    Water Res; 2017 Feb; 109():347-357. PubMed ID: 27926882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum.
    Lohmayer R; Kappler A; Lösekann-Behrens T; Planer-Friedrich B
    Appl Environ Microbiol; 2014 May; 80(10):3141-9. PubMed ID: 24632263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitated transport of ferrihydrite with phosphate under saturated flow conditions.
    Shah T; Zhao K; Chen A; Muhmood A; Shah SAA; Irshad MK; Arai Y; Shang J
    J Contam Hydrol; 2024 Jul; 265():104384. PubMed ID: 38880032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling.
    Straub KL; Schink B
    Appl Environ Microbiol; 2004 Oct; 70(10):5744-9. PubMed ID: 15466509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces.
    Liao P; Pan C; Ding W; Li W; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2020 Apr; 54(7):4256-4266. PubMed ID: 32163701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic strongly associates with ferrihydrite colloids formed in a soil effluent.
    Fritzsche A; Rennert T; Totsche KU
    Environ Pollut; 2011 May; 159(5):1398-405. PubMed ID: 21310516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of humate on the degradation of chloramphenicol by sulfidated ferrihydrite under dynamic anoxic/oxic environments: A combined DFT calculation and experimental study.
    Li Y; Hou J; Miao L; Wu J; Xing B
    Water Res; 2023 Oct; 244():120471. PubMed ID: 37597445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sampling silica and ferrihydrite colloids with fiberglass wicks under unsaturated conditions.
    Shira JM; Williams BC; Flury M; Czigány S; Tuller M
    J Environ Qual; 2006; 35(4):1127-34. PubMed ID: 16738398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the effect of phosphate on ferrihydrite colloid-mediated transport of tetracycline in saturated porous media.
    Wei Q; Chen J; Zhang Q; Lu T; Farooq U; Chen W; Qi Z
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):80693-80704. PubMed ID: 35727510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic mobilization through microbially mediated deflocculation of ferrihydrite.
    Tadanier CJ; Schreiber ME; Roller JW
    Environ Sci Technol; 2005 May; 39(9):3061-8. PubMed ID: 15926553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate.
    Tosco T; Bosch J; Meckenstock RU; Sethi R
    Environ Sci Technol; 2012 Apr; 46(7):4008-15. PubMed ID: 22356610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces.
    Liao P; Li W; Jiang Y; Wu J; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12235-12245. PubMed ID: 28992695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of redox fluctuations on microbe-mediated elemental sulfur disproportionation and coupled redox cycling of iron.
    Zhang K; Zhang S; Liao P; Zhao Y; Gan M; Zhu J
    Water Res; 2023 Oct; 245():120589. PubMed ID: 37708773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Colloidal Stability of CeO2 Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation.
    Liu X; Ray JR; Neil CW; Li Q; Jun YS
    Environ Sci Technol; 2015 May; 49(9):5476-83. PubMed ID: 25850446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.