BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30870635)

  • 1. Sustaining efficient production of aqueous iron during repeated operation of Fe(0)-electrocoagulation.
    Müller S; Behrends T; van Genuchten CM
    Water Res; 2019 May; 155():455-464. PubMed ID: 30870635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.
    van Genuchten CM; Bandaru SR; Surorova E; Amrose SE; Gadgil AJ; Peña J
    Chemosphere; 2016 Jun; 153():270-9. PubMed ID: 27018519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system.
    Bandaru SRS; Roy A; Gadgil AJ; van Genuchten CM
    Water Res; 2020 May; 175():115668. PubMed ID: 32163769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does periodic polarity reversal affect the faradaic efficiency and electrode fouling during iron electrocoagulation?
    Chow H; Ingelsson M; Roberts EPL; Pham AL
    Water Res; 2021 Sep; 203():117497. PubMed ID: 34371234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do operating conditions affect As(III) removal by iron electrocoagulation?
    Delaire C; Amrose S; Zhang M; Hake J; Gadgil A
    Water Res; 2017 Apr; 112():185-194. PubMed ID: 28160698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and Efficient Arsenic Removal by Iron Electrocoagulation Enabled with in Situ Generation of Hydrogen Peroxide.
    Bandaru SRS; van Genuchten CM; Kumar A; Glade S; Hernandez D; Nahata M; Gadgil A
    Environ Sci Technol; 2020 May; 54(10):6094-6103. PubMed ID: 32315523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater.
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2021 Jan; 188():116531. PubMed ID: 33126004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.
    Amrose S; Gadgil A; Srinivasan V; Kowolik K; Muller M; Huang J; Kostecki R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1019-30. PubMed ID: 23573922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of sono-electrocoagulation in arsenic removal from aqueous solutions and the related human health risk assessment.
    Sadeghi H; Mohammadpour A; Samaei MR; Azhdarpoor A; Hadipoor M; Mehrazmay H; Mousavi Khaneghah A
    Environ Res; 2022 Sep; 212(Pt A):113147. PubMed ID: 35341750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter.
    Delaire C; van Genuchten CM; Nelson KL; Amrose SE; Gadgil AJ
    Environ Sci Technol; 2015 Aug; 49(16):9945-53. PubMed ID: 26172118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
    Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ
    Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.
    Modirshahla N; Behnajady MA; Mohammadi-Aghdam S
    J Hazard Mater; 2008 Jun; 154(1-3):778-86. PubMed ID: 18162293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Fe(II) from tap water by electrocoagulation technique.
    Ghosh D; Solanki H; Purkait MK
    J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocoagulation for Arsenic Removal: Field Trials in Rural West Bengal.
    Dutta N; Haldar A; Gupta A
    Arch Environ Contam Toxicol; 2021 Jan; 80(1):248-258. PubMed ID: 33398394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation.
    Tian Y; He W; Liang D; Yang W; Logan BE; Ren N
    Water Res; 2018 Jul; 138():129-136. PubMed ID: 29574200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic from aqueous solution using electrocoagulation.
    Balasubramanian N; Kojima T; Basha CA; Srinivasakannan C
    J Hazard Mater; 2009 Aug; 167(1-3):966-9. PubMed ID: 19231076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical optimization of arsenic removal from synthetic water by electrocoagulation system and its application with real arsenic-polluted groundwater.
    Mendoza-Chávez CE; Carabin A; Dirany A; Drogui P; Buelna G; Meza-Montenegro MM; Ulloa-Mercado RG; Diaz-Tenorio LM; Leyva-Soto LA; Gortáres-Moroyoqui P
    Environ Technol; 2021 Sep; 42(22):3463-3474. PubMed ID: 32072869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid system for groundwater denitrification using electrocoagulation and adsorption.
    Ziouvelou A; Tekerlekopoulou AG; Vayenas DV
    J Environ Manage; 2019 Nov; 249():109355. PubMed ID: 31499372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.