These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30870817)

  • 21. Twenty-fold acceleration of 3D projection reconstruction MPI.
    Konkle JJ; Goodwill PW; Saritas EU; Zheng B; Lu K; Conolly SM
    Biomed Tech (Berl); 2013 Dec; 58(6):565-76. PubMed ID: 23940058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced reconstruction in magnetic particle imaging by whitening and randomized SVD approximation.
    Kluth T; Jin B
    Phys Med Biol; 2019 Jun; 64(12):125026. PubMed ID: 30995635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast System Calibration With Coded Calibration Scenes for Magnetic Particle Imaging.
    Ilbey S; Top CB; Gungor A; Cukur T; Saritas EU; Guven HE
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2070-2080. PubMed ID: 30714915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality.
    Shen Y; Zhang L; Hui H; Guo L; Wang T; Yang G; Tian J
    Comput Methods Programs Biomed; 2024 Jul; 252():108250. PubMed ID: 38815547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved field free line magnetic particle imaging using saddle coils.
    Erbe M; Sattel TF; Buzug TM
    Biomed Tech (Berl); 2013 Dec; 58(6):577-82. PubMed ID: 23934634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging.
    Keselman P; Yu EY; Zhou XY; Goodwill PW; Chandrasekharan P; Ferguson RM; Khandhar AP; Kemp SJ; Krishnan KM; Zheng B; Conolly SM
    Phys Med Biol; 2017 May; 62(9):3440-3453. PubMed ID: 28177301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calibration-Free Relaxation-Based Multi-Color Magnetic Particle Imaging.
    Muslu Y; Utkur M; Demirel OB; Saritas EU
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1920-1931. PubMed ID: 29993774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging.
    Werner F; Gdaniec N; Knopp T
    Phys Med Biol; 2017 May; 62(9):3407-3421. PubMed ID: 28218613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance.
    Ludwig F; Eberbeck D; Löwa N; Steinhoff U; Wawrzik T; Schilling M; Trahms L
    Biomed Tech (Berl); 2013 Dec; 58(6):535-45. PubMed ID: 23751379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging.
    Khandhar AP; Ferguson RM; Arami H; Krishnan KM
    Biomaterials; 2013 May; 34(15):3837-45. PubMed ID: 23434348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sparse reconstruction of the magnetic particle imaging system matrix.
    Knopp T; Weber A
    IEEE Trans Med Imaging; 2013 Aug; 32(8):1473-80. PubMed ID: 23591480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long circulating tracer tailored for magnetic particle imaging.
    Liu S; Chiu-Lam A; Rivera-Rodriguez A; DeGroff R; Savliwala S; Sarna N; Rinaldi-Ramos CM
    Nanotheranostics; 2021; 5(3):348-361. PubMed ID: 33850693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Methods to Estimate the Efficiency of Magnetic Nanoparticles in Imaging.
    Hirt AM; Kumari M; Heinke D; Kraupner A
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29231851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic Particle Imaging Tracers: State-of-the-Art and Future Directions.
    Bauer LM; Situ SF; Griswold MA; Samia AC
    J Phys Chem Lett; 2015 Jul; 6(13):2509-17. PubMed ID: 26266727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging.
    Tomitaka A; Arami H; Gandhi S; Krishnan KM
    Nanoscale; 2015 Oct; 7(40):16890-8. PubMed ID: 26412614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerically efficient estimation of relaxation effects in magnetic particle imaging.
    Rückert MA; Vogel P; Jakob PM; Behr VC
    Biomed Tech (Berl); 2013 Dec; 58(6):593-600. PubMed ID: 24277955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach.
    Pantke D; Holle N; Mogarkar A; Straub M; Schulz V
    Med Phys; 2019 Sep; 46(9):4077-4086. PubMed ID: 31183873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relaxation in x-space magnetic particle imaging.
    Croft LR; Goodwill PW; Conolly SM
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2335-42. PubMed ID: 22968211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic routes to magnetic nanoparticles for MPI.
    Kratz H; Eberbeck D; Wagner S; Taupitz M; Schnorr J
    Biomed Tech (Berl); 2013 Dec; 58(6):509-15. PubMed ID: 23950566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers.
    Lüdtke-Buzug K; Haegele J; Biederer S; Sattel TF; Erbe M; Duschka RL; Barkhausen J; Vogt FM
    Biomed Tech (Berl); 2013 Dec; 58(6):527-33. PubMed ID: 23787462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.