These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 30870827)
1. Biomimetic design and fabrication of scaffolds integrating oriented micro-pores with branched channel networks for myocardial tissue engineering. Fang Y; Zhang T; Zhang L; Gong W; Sun W Biofabrication; 2019 Apr; 11(3):035004. PubMed ID: 30870827 [TBL] [Abstract][Full Text] [Related]
2. Microfabrication of channel arrays promotes vessel-like network formation in cardiac cell construct and vascularization in vivo. Zieber L; Or S; Ruvinov E; Cohen S Biofabrication; 2014 Jun; 6(2):024102. PubMed ID: 24464741 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Zhang B; Montgomery M; Chamberlain MD; Ogawa S; Korolj A; Pahnke A; Wells LA; Massé S; Kim J; Reis L; Momen A; Nunes SS; Wheeler AR; Nanthakumar K; Keller G; Sefton MV; Radisic M Nat Mater; 2016 Jun; 15(6):669-78. PubMed ID: 26950595 [TBL] [Abstract][Full Text] [Related]
4. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Gauvin R; Chen YC; Lee JW; Soman P; Zorlutuna P; Nichol JW; Bae H; Chen S; Khademhosseini A Biomaterials; 2012 May; 33(15):3824-34. PubMed ID: 22365811 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques. Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Huling J; Ko IK; Atala A; Yoo JJ Acta Biomater; 2016 Mar; 32():190-197. PubMed ID: 26772527 [TBL] [Abstract][Full Text] [Related]
7. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. Arora A; Kothari A; Katti DS J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472 [TBL] [Abstract][Full Text] [Related]
8. Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Zhu Y; Wan Y; Zhang J; Yin D; Cheng W Colloids Surf B Biointerfaces; 2014 Jan; 113():352-60. PubMed ID: 24121078 [TBL] [Abstract][Full Text] [Related]
9. Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material. Zou Q; Grottkau BE; He Z; Shu L; Yang L; Ma M; Ye C Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110205. PubMed ID: 31924015 [TBL] [Abstract][Full Text] [Related]
10. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609 [TBL] [Abstract][Full Text] [Related]
11. A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks. Li S; Liu YY; Liu LJ; Hu QX ACS Appl Mater Interfaces; 2016 Sep; 8(38):25096-103. PubMed ID: 27607243 [TBL] [Abstract][Full Text] [Related]
12. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. Norahan MH; Amroon M; Ghahremanzadeh R; Mahmoodi M; Baheiraei N J Biomed Mater Res A; 2019 Jan; 107(1):204-219. PubMed ID: 30371973 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic engineering of the cardiac tissue through processing, functionalization, and biological characterization of polyester urethanes. Vozzi F; Logrand F; Cabiati M; Cicione C; Boffito M; Carmagnola I; Vitale N; Gori M; Brancaccio M; Del Ry S; Gastaldi D; Cattarinuzzi E; Vena P; Rainer A; Domenici C; Ciardelli G; Sartori S Biomed Mater; 2018 Jul; 13(5):055006. PubMed ID: 29869614 [TBL] [Abstract][Full Text] [Related]
14. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Wang Y; Van Manh N; Wang H; Zhong X; Zhang X; Li C Int J Nanomedicine; 2016; 11():2053-67. PubMed ID: 27274235 [TBL] [Abstract][Full Text] [Related]
15. Characterizing collagen scaffold compliance with native myocardial strains using an ex-vivo cardiac model: The physio-mechanical influence of scaffold architecture and attachment method. Cyr JA; Burdett C; Pürstl JT; Thompson RP; Troughton SC; Sinha S; Best SM; Cameron RE Acta Biomater; 2024 Aug; 184():239-253. PubMed ID: 38942187 [TBL] [Abstract][Full Text] [Related]
16. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
17. Micropatterning electrospun scaffolds to create intrinsic vascular networks. Jeffries EM; Nakamura S; Lee KW; Clampffer J; Ijima H; Wang Y Macromol Biosci; 2014 Nov; 14(11):1514-20. PubMed ID: 25142314 [TBL] [Abstract][Full Text] [Related]
18. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Tocchio A; Tamplenizza M; Martello F; Gerges I; Rossi E; Argentiere S; Rodighiero S; Zhao W; Milani P; Lenardi C Biomaterials; 2015 Mar; 45():124-31. PubMed ID: 25662502 [TBL] [Abstract][Full Text] [Related]
19. Embedding Biomimetic Vascular Networks via Coaxial Sacrificial Writing into Functional Tissue. Stankey PP; Kroll KT; Ainscough AJ; Reynolds DS; Elamine A; Fichtenkort BT; Uzel SGM; Lewis JA Adv Mater; 2024 Sep; 36(36):e2401528. PubMed ID: 39092638 [TBL] [Abstract][Full Text] [Related]