These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 30870837)

  • 1. Inappropriate Use of the "Rosowski Criteria" and "Modified Rosowski Criteria" for Assessing the Normal Function of Human Temporal Bones.
    Morse RP; Mitchell-Innes A; Prokopiou AN; Irving RM; Begg PA
    Audiol Neurootol; 2019; 24(1):20-24. PubMed ID: 30870837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully implantable hearing aid in the incudostapedial joint gap.
    Koch M; Eßinger TM; Stoppe T; Lasurashvili N; Bornitz M; Zahnert T
    Hear Res; 2016 Oct; 340():169-178. PubMed ID: 27041338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New knowledge about the function of the human middle ear: development of an improved analog model.
    Goode RL; Killion M; Nakamura K; Nishihara S
    Am J Otol; 1994 Mar; 15(2):145-54. PubMed ID: 8172293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory effects of autologous fat graft for TORP stabilization in the middle ear: a cadaveric study.
    Aron M; Landry TG; Bance M
    J Otolaryngol Head Neck Surg; 2018 Feb; 47(1):17. PubMed ID: 29454371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic transfer characteristics in human middle ears studied by a SQUID magnetometer method.
    Brenkman CJ; Grote JJ; Rutten WL
    J Acoust Soc Am; 1987 Nov; 82(5):1646-54. PubMed ID: 3693706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone.
    Feeney MP; Grant IL; Mills DM
    Ear Hear; 2009 Aug; 30(4):391-400. PubMed ID: 19424071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional modeling of middle ear biomechanics and its applications.
    Gan RZ; Sun Q; Dyer RK; Chang KH; Dormer KJ
    Otol Neurotol; 2002 May; 23(3):271-80. PubMed ID: 11981381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative assessment of ossicular fixation.
    Peacock J; Dirckx J; von Unge M
    Hear Res; 2016 Oct; 340():99-106. PubMed ID: 27034152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing a method for quantifying the output of implantable middle ear hearing devices.
    Rosowski JJ; Chien W; Ravicz ME; Merchant SN
    Audiol Neurootol; 2007; 12(4):265-76. PubMed ID: 17406105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of implantable actuators by means of a middle ear simulation model.
    Bornitz M; Hardtke HJ; Zahnert T
    Hear Res; 2010 May; 263(1-2):145-51. PubMed ID: 20156543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum Coupling of an Active Middle Ear Actuator: Effect of Loading Forces on Actuator Output and Conductive Losses.
    Gamm UA; Grossöhmichen M; Salcher RB; Prenzler NK; Lenarz T; Maier H
    Otol Neurotol; 2019 Jul; 40(6):789-796. PubMed ID: 30994569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new implantable middle ear hearing device for mixed hearing loss: A feasibility study in human temporal bones.
    Huber AM; Ball GR; Veraguth D; Dillier N; Bodmer D; Sequeira D
    Otol Neurotol; 2006 Dec; 27(8):1104-9. PubMed ID: 17031322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Silastic sheeting over the round window niche on sound transmission in the intact human middle ear.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Feb; 41(1):1-7. PubMed ID: 22498261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass loading on the ossicles and middle ear function.
    Gan RZ; Dyer RK; Wood MW; Dormer KJ
    Ann Otol Rhinol Laryngol; 2001 May; 110(5 Pt 1):478-85. PubMed ID: 11372934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new malleostapedotomy prosthesis. Experimental analysis by laser doppler vibrometer in fresh cadaver temporal bones.
    Vallejo LA; Manzano MT; Hidalgo A; Hernández A; Sabas J; Lara H; Gil-Carcedo E; Herrero D
    Acta Otorrinolaringol Esp; 2017; 68(2):69-79. PubMed ID: 27206397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.