These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30871058)

  • 1. Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review.
    Humbert C; Noblet T; Dalstein L; Busson B; Barbillon G
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30871058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a Local Field Effect in Surface Plasmon-Enhanced Sum Frequency Generation Vibrational Spectra.
    Tan J; Pei Q; Zhang L; Ye S
    Langmuir; 2022 May; 38(19):6099-6105. PubMed ID: 35499917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Prevailing Role of Hotspots in Plasmon-Enhanced Sum-Frequency Generation Spectroscopy.
    Dalstein L; Humbert C; Ben Haddada M; Boujday S; Barbillon G; Busson B
    J Phys Chem Lett; 2019 Dec; 10(24):7706-7711. PubMed ID: 31765159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection.
    Guo W; Liu B; He Y; You E; Zhang Y; Huang S; Wang J; Wang Z
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33352752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Imaging of Surfaces with Sum Frequency Generation Vibrational Spectroscopy.
    Shah SA; Baldelli S
    Acc Chem Res; 2020 Jun; 53(6):1139-1150. PubMed ID: 32437170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection.
    Lee J; Takemura K; Park EY
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy.
    Pluchery O; Humbert C; Valamanesh M; Lacaze E; Busson B
    Phys Chem Chem Phys; 2009 Sep; 11(35):7729-37. PubMed ID: 19950513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance in gold nanoparticles: a review.
    Amendola V; Pilot R; Frasconi M; Maragò OM; Iatì MA
    J Phys Condens Matter; 2017 May; 29(20):203002. PubMed ID: 28426435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.
    Ding B; Jasensky J; Li Y; Chen Z
    Acc Chem Res; 2016 Jun; 49(6):1149-57. PubMed ID: 27188920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Optical Methods for Characterization of Molecular Structure and Surface Chemistry.
    Johansson PK; Schmüser L; Castner DG
    Top Catal; 2018 Jun; 61(9-11):1101-1124. PubMed ID: 29955207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Core-Shell Nanomaterials and their Applications in Spectroscopies.
    Zhang YJ; Radjenovic PM; Zhou XS; Zhang H; Yao JL; Li JF
    Adv Mater; 2021 Dec; 33(50):e2005900. PubMed ID: 33811422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powder sum-frequency generation as a versatile method for infrared optical alignment.
    Gai B; Yuan H; Song Y; Liu J; Hu S; Cai X; Wang P; Chen Y; Guo J
    Appl Opt; 2018 Apr; 57(10):2577-2583. PubMed ID: 29714243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of direct and phase-specific vibrational sum-frequency generation spectroscopy: advantages and limitations.
    Pool RE; Versluis J; Backus EH; Bonn M
    J Phys Chem B; 2011 Dec; 115(51):15362-9. PubMed ID: 22074616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Plasmonic Fiber-Optic Sensors.
    Qi M; Zhang NMY; Li K; Tjin SC; Wei L
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation.
    Wang HF; Velarde L; Gan W; Fu L
    Annu Rev Phys Chem; 2015 Apr; 66():189-216. PubMed ID: 25493712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.