BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30871164)

  • 1. Recovery of Rare Earth Elements from Wastewater Towards a Circular Economy.
    Barros Ó; Costa L; Costa F; Lago A; Rocha V; Vipotnik Z; Silva B; Tavares T
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30871164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of the application of cerium and lanthanum in phosphorus removal during wastewater treatment: Characteristics, mechanism, and recovery.
    Kajjumba GW; Marti EJ
    Chemosphere; 2022 Dec; 309(Pt 1):136462. PubMed ID: 36162516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency recovery of cerium ions from monazite leach liquor by polyamines and polycarboxylates chitosan sorbents prepared from marine industrial wastes.
    Abd El-Magied MO
    Int J Biol Macromol; 2023 Jul; 243():125243. PubMed ID: 37295692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of rare earth metal ion on aerobic granules.
    Zhang LL; Feng XX; Xu F; Xu S; Cai WM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):857-67. PubMed ID: 15792304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption and desorption of lanthanum(III) and neodymium(III) in fixed-bed columns with Sargassum sp.: perspectives for separation of rare earth metals.
    Oliveira RC; Guibal E; Garcia O
    Biotechnol Prog; 2012; 28(3):715-22. PubMed ID: 22275117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption and desorption of ammonium by zeolite: Batch and column studies.
    Cyrus JS; Reddy GB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(4):408-14. PubMed ID: 21391034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption as green technology for the recovery and separation of rare earth elements.
    Giese EC
    World J Microbiol Biotechnol; 2020 Mar; 36(4):52. PubMed ID: 32172357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite.
    Purna Chandra Rao G; Satyaveni S; Ramesh A; Seshaiah K; Murthy KS; Choudary NV
    J Environ Manage; 2006 Nov; 81(3):265-72. PubMed ID: 16580120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash.
    He K; Chen Y; Tang Z; Hu Y
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2778-88. PubMed ID: 26446735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite.
    Muscarella SM; Badalucco L; Cano B; Laudicina VA; Mannina G
    Bioresour Technol; 2021 Dec; 341():125812. PubMed ID: 34455254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of chlortetracycline from aquaculture wastewater using modified zeolites.
    Yu R; Yu X; Xue B; Liao J; Zhu W; Tian S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):573-584. PubMed ID: 31983268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of cerium (III) by zeolites synthesized from kaolinite after rare earth elements (REEs) recovery.
    Ji B; Zhang W
    Chemosphere; 2022 Sep; 303(Pt 1):134941. PubMed ID: 35569630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption characteristics of ammonium exchange by zeolite and the optimal application in the tertiary treatment of coking wastewater using response surface methodology.
    Zhao C; Zheng Z; Zhang J; Wen D; Tang X
    Water Sci Technol; 2013; 67(3):619-27. PubMed ID: 23202568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of natural zeolite polluted by lead and zinc in wastewater treatment systems.
    Katsou E; Malamis S; Tzanoudaki M; Haralambous KJ; Loizidou M
    J Hazard Mater; 2011 May; 189(3):773-86. PubMed ID: 21470771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient removal of aluminum, iron, and manganese ions using Linde type-A zeolite obtained from hazardous waste.
    Lobo-Recio MÁ; Rodrigues C; Custódio Jeremias T; Lapolli FR; Padilla I; López-Delgado A
    Chemosphere; 2021 Mar; 267():128919. PubMed ID: 33220989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of rare earth metals from wastewater by nanomaterials: A review.
    Kegl T; Košak A; Lobnik A; Novak Z; Kralj AK; Ban I
    J Hazard Mater; 2020 Mar; 386():121632. PubMed ID: 31753662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite.
    Panayotova MI
    Waste Manag; 2001; 21(7):671-6. PubMed ID: 11530923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of flotation for the separation of metal-loaded zeolites.
    Matis KA; Zouboulis AI; Gallios GP; Erwe T; Blöcher C
    Chemosphere; 2004 Apr; 55(1):65-72. PubMed ID: 14720548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of rare earth elements on a magnetic geopolymer derived from rice husk: studies in batch, column, and application in real phosphogypsum leachate sample.
    Dos Reis GS; Srivastava V; Taleb MFA; Ibrahim MM; Dotto GL; Rossatto DL; Oliveira MLS; Silva LFO; Lassi U
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10417-10429. PubMed ID: 38200192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.