These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30871226)

  • 1. Design and Analysis of a Continuously Tunable Low Noise Amplifier for Software Defined Radio.
    Aneja A; Li XJ
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of a Novel CMOS-Compatible Magnetoelectric Antenna with a Low-Noise Amplifier and a Tunable Input Matching.
    Nasrollahpour M; Romano A; Zaeimbashi M; Liang X; Chen H; Sun N; Emam S; Onabajo M; Xiang Sun N
    Analog Integr Circuits Signal Process; 2020 Dec; 105(3):407-415. PubMed ID: 34511725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Inductorless Gain-Controllable Wideband LNA Based on CCCIIs.
    Wan Q; Liu J; Chen S
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wide-Bandwidth PVT-Reconfigurable CMOS Power Amplifier with an Integrated Tunable-Output Impedance Matching Network.
    Mariappan S; Rajendran J; Kumar N; Othman M; Nathan A; Grebennikov A; Yarman BS
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature Switchable Millimeter-Wave BiCMOS Low-Noise Amplifier at 120/140 GHz Using an HBT Switch.
    Heredia J; Ribó M; Pradell L; Wipf ST; Göritz A; Wietstruck M; Wipf C; Kaynak M
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31546612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 20-44 GHz Wideband LNA Design Using the SiGe Technology for 5G Millimeter-Wave Applications.
    Balani W; Sarvagya M; Ali T; Samasgikar A; Kumar P; Pathan S; Pai M M M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 1.8-2.7 GHz Triple-Band Low Noise Amplifier with 31.5 dB Dynamic Range of Power Gain and Adaptive Power Consumption for LTE Application.
    Asl SAH; Rad RE; Rikan BS; Pu Y; Hwang KC; Yang Y; Lee KY
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications.
    El-Desouki MM; Qasim SM; BenSaleh MS; Deen MJ
    Sensors (Basel); 2015 May; 15(5):10791-805. PubMed ID: 25961380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooling a low noise amplifier with a micromachined cryogenic cooler.
    Cao HS; Witvers RH; Vanapalli S; Holland HJ; ter Brake HJ
    Rev Sci Instrum; 2013 Oct; 84(10):105102. PubMed ID: 24182158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 2-V 1.4-dB NF GaAs MMIC LNA for K-Band Applications.
    Galante-Sempere D; Khemchandani SL; Del Pino J
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 90 nm-CMOS broadband receiver with 10 dB conversion gain and 15 dB noise figure in 80-110 GHz suitable for multi-pixel imaging arrays.
    Chu-Chen H; Hsieh KH; Hu R
    Rev Sci Instrum; 2021 Aug; 92(8):084703. PubMed ID: 34470377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Power Low-Noise Amplifier Using Attenuation-Adaptive Noise Control for Ultrasound Imaging Systems.
    Jung SJ; Hong SK; Kwon OK
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):108-116. PubMed ID: 27337722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wideband Noise and Harmonic Distortion Canceling Low-Noise Amplifier for High-Frequency Ultrasound Transducers.
    Tang Y; Feng Y; Hu H; Fang C; Deng H; Zhang R; Zou J; Chen J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadly tunable and low power penalty radio frequency phase shifter using a coupled silicon microcavity.
    Pandey A; Selvaraja SK
    Appl Opt; 2020 Jan; 59(2):425-432. PubMed ID: 32225323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matched wideband low-noise amplifiers for radio astronomy.
    Weinreb S; Bardin J; Mani H; Jones G
    Rev Sci Instrum; 2009 Apr; 80(4):044702. PubMed ID: 19405681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniature Wide-Band Noise-Canceling CMOS LNA.
    Galante-Sempere D; Del Pino J; Khemchandani SL; García-Vázquez H
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations.
    Tang J; Li M; Sun S; Li Z; Li W; Zhu N
    Opt Lett; 2016 Oct; 41(20):4609-4612. PubMed ID: 28005848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh Frequency Ultrasonic Transducers Design with Low Noise Amplifier Integrated Circuit.
    Li D; Fei C; Zhang Q; Li Y; Yang Y; Zhou Q
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Low Noise Amplifier for Neural Spike Recording Interfaces.
    Ruiz-Amaya J; Rodriguez-Perez A; Delgado-Restituto M
    Sensors (Basel); 2015 Sep; 15(10):25313-35. PubMed ID: 26437411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Considerations for a Sub-mW Wireless Medical Body-Area Network Receiver Front End.
    Kargaran E; Manstretta D; Castello R
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.