BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 30871687)

  • 1. Joint segmentation and classification of retinal arteries/veins from fundus images.
    Girard F; Kavalec C; Cheriet F
    Artif Intell Med; 2019 Mar; 94():96-109. PubMed ID: 30871687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artery vein classification in fundus images using serially connected U-Nets.
    Karlsson RA; Hardarson SH
    Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images.
    Morano J; Hervella ÁS; Novo J; Rouco J
    Artif Intell Med; 2021 Aug; 118():102116. PubMed ID: 34412839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artery-vein segmentation in fundus images using a fully convolutional network.
    Hemelings R; Elen B; Stalmans I; Van Keer K; De Boever P; Blaschko MB
    Comput Med Imaging Graph; 2019 Sep; 76():101636. PubMed ID: 31288217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSGANet-RAV: A multiscale guided attention network for artery-vein segmentation and classification from optic disc and retinal images.
    Chowdhury AZME; Mann G; Morgan WH; Vukmirovic A; Mehnert A; Sohel F
    J Optom; 2022; 15 Suppl 1(Suppl 1):S58-S69. PubMed ID: 36396540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks.
    Joonyoung Song ; Boreom Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():681-684. PubMed ID: 29059964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images.
    Muramatsu C; Hatanaka Y; Iwase T; Hara T; Fujita H
    Comput Med Imaging Graph; 2011 Sep; 35(6):472-80. PubMed ID: 21489750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model.
    Gegundez-Arias ME; Marin-Santos D; Perez-Borrero I; Vasallo-Vazquez MJ
    Comput Methods Programs Biomed; 2021 Jun; 205():106081. PubMed ID: 33882418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model.
    Zhou C; Zhang X; Chen H
    Comput Methods Programs Biomed; 2020 Apr; 187():105231. PubMed ID: 31786454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation.
    Li D; Rahardja S
    Comput Methods Programs Biomed; 2021 Jun; 205():106070. PubMed ID: 33857703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast Enhancement of RGB Retinal Fundus Images for Improved Segmentation of Blood Vessels Using Convolutional Neural Networks.
    Sule O; Viriri S
    J Digit Imaging; 2023 Apr; 36(2):414-432. PubMed ID: 36456839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal blood vessel segmentation based on Densely Connected U-Net.
    Cheng YL; Ma MN; Zhang LJ; Jin CJ; Ma L; Zhou Y
    Math Biosci Eng; 2020 Apr; 17(4):3088-3108. PubMed ID: 32987518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DISCERN: Generative Framework for Vessel Segmentation using Convolutional Neural Network and Visual Codebook.
    Chudzik P; Al-Diri B; Caliva F; Hunter A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5934-5937. PubMed ID: 30441687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Hidden Markov Model based intelligent blood vessel detection of fundus images.
    Hassan M; Amin M; Murtza I; Khan A; Chaudhry A
    Comput Methods Programs Biomed; 2017 Nov; 151():193-201. PubMed ID: 28947001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and efficient retinal blood vessel segmentation method based on deep learning network.
    Boudegga H; Elloumi Y; Akil M; Hedi Bedoui M; Kachouri R; Abdallah AB
    Comput Med Imaging Graph; 2021 Jun; 90():101902. PubMed ID: 33892389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.