These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30872240)

  • 1. A Low-Voltage CMOS Rectifier with On-Chip Matching Network and a Magnetic Field Focused Antenna for Wirelessly Powered Medical Implants.
    Wang Z; Mirabbasi S
    IEEE Trans Biomed Circuits Syst; 2019 Mar; ():. PubMed ID: 30872240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Optimization of a Fully Cross-Coupled Rectifier Circuit for Wireless Passive Ultra Low Power Sensor Nodes.
    Mair D; Ferdik M; Happ C; Renzler M; Ussmueller T
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.
    Shokrani MR; Khoddam M; Hamidon MN; Kamsani NA; Rokhani FZ; Shafie SB
    ScientificWorldJournal; 2014; 2014():963709. PubMed ID: 24782680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.
    Yan Lu ; Wing-Hung Ki
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):334-44. PubMed ID: 23846494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feed-forward controlled AC-DC boost converter for biomedical implants.
    Jiang H; Lan D; Lin D; Zhang J; Liou S; Shahnasser H; Shen M; Harrison M; Roy S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1675-8. PubMed ID: 23366230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Differential Rectifier With V
    Akram MA; Ha S
    IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):653-663. PubMed ID: 37023151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CMOS Radio Frequency Energy Harvester (RFEH) with Fully On-Chip Tunable Voltage-Booster for Wideband Sensitivity Enhancement.
    Li Y; Rajendran J; Mariappan S; Rawat AS; Sal Hamid S; Kumar N; Othman M; Nathan A
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier.
    Lyu H; Wang J; La JH; Chung JM; Babakhani A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1131-1143. PubMed ID: 30040661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 6.78 MHz, 95.0% Peak Efficiency Monolithic Two-Dimensional Calibrated Active Rectifier for Wirelessly Powered Implantable Biomedical Devices.
    Namgoong G; Choi E; Park W; Lee B; Park H; Ma H; Bien F
    IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):509-521. PubMed ID: 34033546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mm-sized wirelessly powered and remotely controlled locomotive implant.
    Pivonka D; Yakovlev A; Poon AS; Meng T
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):523-32. PubMed ID: 23853253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, Characterization and Development of Energy Harvesting Techniques Incorporated with Antennas: A Review Study.
    Ibrahim HH; Singh MSJ; Al-Bawri SS; Islam MT
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32414069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 13.56 MHz Triple Mode Rectifier Circuit With Extended Coupling Range for Wirelessly Powered Implantable Medical Devices.
    Engur Y; Yigit HA; Kulah H
    IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):68-79. PubMed ID: 33360999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 900 MHz, Wide-Input Range, High-Efficiency, Differential CMOS Rectifier for Ambient Wireless Powering.
    Alhoshany A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Broad Dual-Band Implantable Antenna for RF Energy Harvesting and Data Transmitting.
    Fan Y; Liu X; Xu C
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Circularly Polarized Implantable Rectenna for Microwave Wireless Power Transfer.
    Xu C; Fan Y; Liu X
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An 11 μW Sub-pJ/bit Reconfigurable Transceiver for mm-Sized Wireless Implants.
    Yakovlev A; Jang JH; Pivonka D
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):175-85. PubMed ID: 25616075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fully-Integrated Ambient RF Energy Harvesting System with 423-μW Output Power.
    Pakkirisami Churchill KK; Ramiah H; Chong G; Chen Y; Mak PI; Martins RP
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wirelessly powered electro-acupuncture based on adaptive pulsewidth monophase stimulation.
    Kiseok Song ; Long Yan ; Seulki Lee ; Yoo J; Hoi-Jun Yoo
    IEEE Trans Biomed Circuits Syst; 2011 Apr; 5(2):138-46. PubMed ID: 23851202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An RF-Ultrasound Relay for Adaptive Wireless Powering Across Tissue Interfaces.
    So E; Yeon P; Chichilnisky EJ; Arbabian A
    IEEE J Solid-State Circuits; 2022 Nov; 57(11):3429-3441. PubMed ID: 37138581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.