These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30872614)

  • 1. Observation of a superconducting glass state in granular superconducting diamond.
    Klemencic GM; Fellows JM; Werrell JM; Mandal S; Giblin SR; Smith RA; Williams OA
    Sci Rep; 2019 Mar; 9(1):4578. PubMed ID: 30872614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global and local superconductivity in boron-doped granular diamond.
    Zhang G; Turner S; Ekimov EA; Vanacken J; Timmermans M; Samuely T; Sidorov VA; Stishov SM; Lu Y; Deloof B; Goderis B; Van Tendeloo G; Van de Vondel J; Moshchalkov VV
    Adv Mater; 2014 Apr; 26(13):2034-40. PubMed ID: 24343908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconductivity in 4-Angstrom carbon nanotubes--a short review.
    Wang Z; Shi W; Lortz R; Sheng P
    Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-bosonic insulator-superconductor transition in boron-doped granular diamond.
    Zhang G; Zeleznik M; Vanacken J; May PW; Moshchalkov VV
    Phys Rev Lett; 2013 Feb; 110(7):077001. PubMed ID: 25166395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excess conductivity and Berezinskii-Kosterlitz-Thouless transition in superconducting FeSe thin films.
    Schneider R; Zaitsev AG; Fuchs D; von Löhneysen H
    J Phys Condens Matter; 2014 Nov; 26(45):455701. PubMed ID: 25319094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional superconducting nature of Bi
    Zhang L; Kang C; Liu C; Wang K; Zhang W
    RSC Adv; 2023 Aug; 13(37):25797-25803. PubMed ID: 37664203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-two-dimensional superconductivity in FeSe0.3Te0.7 thin films and electric-field modulation of superconducting transition.
    Lin Z; Mei C; Wei L; Sun Z; Wu S; Huang H; Zhang S; Liu C; Feng Y; Tian H; Yang H; Li J; Wang Y; Zhang G; Lu Y; Zhao Y
    Sci Rep; 2015 Sep; 5():14133. PubMed ID: 26382136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films.
    Bustarret E; Kacmarcik J; Marcenat C; Gheeraert E; Cytermann C; Marcus J; Klein T
    Phys Rev Lett; 2004 Dec; 93(23):237005. PubMed ID: 15601192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex Phase-Fluctuation Effects Correlated with Granularity in Superconducting NbN Nanofilms.
    Sharma M; Singh M; Rakshit RK; Singh SP; Fretto M; De Leo N; Perali A; Pinto N
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-property correlations in phase-pure B-doped Q-carbon high-temperature superconductor with a record T
    Bhaumik A; Narayan J
    Nanoscale; 2019 May; 11(18):9141-9154. PubMed ID: 31038149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diamond superconducting quantum interference device.
    Mandal S; Bautze T; Williams OA; Naud C; Bustarret É; Omnès F; Rodière P; Meunier T; Bäuerle C; Saminadayar L
    ACS Nano; 2011 Sep; 5(9):7144-8. PubMed ID: 21800905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconductivity in diamond.
    Ekimov EA; Sidorov VA; Bauer ED; Mel'nik NN; Curro NJ; Thompson JD; Stishov SM
    Nature; 2004 Apr; 428(6982):542-5. PubMed ID: 15057827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructures made from superconducting boron-doped diamond.
    Mandal S; Naud C; Williams OA; Bustarret E; Omnès F; Rodière P; Meunier T; Saminadayar L; Bäuerle C
    Nanotechnology; 2010 May; 21(19):195303. PubMed ID: 20400817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selected topics related to the transport and superconductivity in boron-doped diamond.
    Mareš J; Hubík P; Krištofik J; Nesládek M
    Sci Technol Adv Mater; 2008 Dec; 9(4):044101. PubMed ID: 27878014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local boron environment in B-doped nanocrystalline diamond films.
    Turner S; Lu YG; Janssens SD; Da Pieve F; Lamoen D; Verbeeck J; Haenen K; Wagner P; Van Tendeloo G
    Nanoscale; 2012 Sep; 4(19):5960-4. PubMed ID: 22903371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductivity in planarised nanocrystalline diamond films.
    Klemencic GM; Mandal S; Werrell JM; Giblin SR; Williams OA
    Sci Technol Adv Mater; 2017; 18(1):239-244. PubMed ID: 28458745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-2D superconductivity in FeTe
    Tang F; Wang P; Wang P; Gan Y; Gu GD; Zhang W; He M; Zhang L
    J Phys Condens Matter; 2019 Jul; 31(26):265702. PubMed ID: 30925488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and superconductivity of isotope-enriched boron-doped diamond.
    Ekimov EA; Sidorov VA; Zoteev AV; Lebed JB; Thompson JD; Stishov SM
    Sci Technol Adv Mater; 2008 Dec; 9(4):044210. PubMed ID: 27878027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
    Park T; Ronning F; Yuan HQ; Salamon MB; Movshovich R; Sarrao JL; Thompson JD
    Nature; 2006 Mar; 440(7080):65-8. PubMed ID: 16511490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of a superconducting gap in boron-doped diamond by laser-excited photoemission spectroscopy.
    Ishizaka K; Eguchi R; Tsuda S; Yokoya T; Chainani A; Kiss T; Shimojima T; Togashi T; Watanabe S; Chen CT; Zhang CQ; Takano Y; Nagao M; Sakaguchi I; Takenouchi T; Kawarada H; Shin S
    Phys Rev Lett; 2007 Jan; 98(4):047003. PubMed ID: 17358800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.