BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 30872703)

  • 1. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells.
    Lian S; Xie R; Ye Y; Lu Y; Cheng Y; Xie X; Li S; Jia L
    Sci Rep; 2019 Mar; 9(1):4532. PubMed ID: 30872703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release.
    Lian S; Xie R; Ye Y; Xie X; Li S; Lu Y; Li B; Cheng Y; Katanaev VL; Jia L
    EBioMedicine; 2019 Apr; 42():281-295. PubMed ID: 30878596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy.
    Schürch CM; Roelli MA; Forster S; Wasmer MH; Brühl F; Maire RS; Di Pancrazio S; Ruepp MD; Giger R; Perren A; Schmitt AM; Krebs P; Charles RP; Dettmer MS
    Thyroid; 2019 Jul; 29(7):979-992. PubMed ID: 30938231
    [No Abstract]   [Full Text] [Related]  

  • 4. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.
    Liu B; Guo H; Xu J; Qin T; Guo Q; Gu N; Zhang D; Qian W; Dai J; Hou S; Wang H; Guo Y
    MAbs; 2018; 10(2):315-324. PubMed ID: 29182441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockade of dual immune checkpoint inhibitory signals with a CD47/PD-L1 bispecific antibody for cancer treatment.
    Wang R; Zhang C; Cao Y; Wang J; Jiao S; Zhang J; Wang M; Tang P; Ouyang Z; Liang W; Mao Y; Wang A; Li G; Zhang J; Wang M; Wang S; Gui X
    Theranostics; 2023; 13(1):148-160. PubMed ID: 36593962
    [No Abstract]   [Full Text] [Related]  

  • 6. Understanding the regulation of "Don't Eat-Me" signals by inflammatory signaling pathways in the tumor microenvironment for more effective therapy.
    Karizak AZ; Salmasi Z; Gheibihayat SM; Asadi M; Ghasemi Y; Tajbakhsh A; Savardashtaki A
    J Cancer Res Clin Oncol; 2023 Jan; 149(1):511-529. PubMed ID: 36342520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of a CD47-blocking "hotspot" and design of a CD47/PD-L1 dual-specific antibody with limited hemagglutination.
    Shi R; Chai Y; Duan X; Bi X; Huang Q; Wang Q; Tan S; Gao GF; Zhu J; Yan J
    Signal Transduct Target Ther; 2020 Mar; 5(1):16. PubMed ID: 32296041
    [No Abstract]   [Full Text] [Related]  

  • 8. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
    Matlung HL; Szilagyi K; Barclay NA; van den Berg TK
    Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer.
    Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H
    J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Bispecific Antibody Derivatives for Cancer Immunotherapy.
    He Y; Helfrich W; Bremer E
    Methods Mol Biol; 2019; 1884():335-347. PubMed ID: 30465214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a novel dual-targeting D-peptide to block CD24/Siglec-10 and PD-1/PD-L1 interaction and synergize with radiotherapy for cancer immunotherapy.
    Shen W; Shi P; Dong Q; Zhou X; Chen C; Sui X; Tian W; Zhu X; Wang X; Jin S; Wu Y; Chen G; Qiu L; Zhai W; Gao Y
    J Immunother Cancer; 2023 Jun; 11(6):. PubMed ID: 37344099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity.
    Wang Y; Ni H; Zhou S; He K; Gao Y; Wu W; Wu M; Wu Z; Qiu X; Zhou Y; Chen B; Pan D; Huang C; Li M; Bian Y; Yang M; Miao L; Liu J
    Cancer Immunol Immunother; 2021 Feb; 70(2):365-376. PubMed ID: 32761423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PD-L1 and CD47 co-expression in pulmonary sarcomatoid carcinoma: a predictor of poor prognosis and potential targets of future combined immunotherapy.
    Yang Z; Xu J; Li R; Gao Y; He J
    J Cancer Res Clin Oncol; 2019 Dec; 145(12):3055-3065. PubMed ID: 31522278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repositioning Azelnidipine as a Dual Inhibitor Targeting CD47/SIRPα and TIGIT/PVR Pathways for Cancer Immuno-Therapy.
    Zhou X; Jiao L; Qian Y; Dong Q; Sun Y; Zheng WV; Zhao W; Zhai W; Qiu L; Wu Y; Wang H; Gao Y; Chen J
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34068552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The overall potential of CD47 in cancer immunotherapy: with a focus on gastrointestinal tumors.
    Tzatzarakis E; Hissa B; Reissfelder C; Schölch S
    Expert Rev Anticancer Ther; 2019 Nov; 19(11):993-999. PubMed ID: 31686549
    [No Abstract]   [Full Text] [Related]  

  • 16. Design of a novel chimeric peptide via dual blockade of CD47/SIRPα and PD-1/PD-L1 for cancer immunotherapy.
    Hu Z; Li W; Chen S; Chen D; Xu R; Zheng D; Yang X; Li S; Zhou X; Niu X; Xiao Y; He Z; Li H; Liu J; Sui X; Gao Y
    Sci China Life Sci; 2023 Oct; 66(10):2310-2328. PubMed ID: 37115491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises.
    Tong B; Wang M
    Future Oncol; 2018 Sep; 14(21):2179-2188. PubMed ID: 29667847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IgA-Mediated Killing of Tumor Cells by Neutrophils Is Enhanced by CD47-SIRPα Checkpoint Inhibition.
    Treffers LW; Ten Broeke T; Rösner T; Jansen JHM; van Houdt M; Kahle S; Schornagel K; Verkuijlen PJJH; Prins JM; Franke K; Kuijpers TW; van den Berg TK; Valerius T; Leusen JHW; Matlung HL
    Cancer Immunol Res; 2020 Jan; 8(1):120-130. PubMed ID: 31690649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer.
    Huang Y; Lv SQ; Liu PY; Ye ZL; Yang H; Li LF; Zhu HL; Wang Y; Cui LZ; Jiang DQ; Hao FY; Xu HM; Jin HJ; Qian QJ
    Mol Oncol; 2020 Mar; 14(3):657-668. PubMed ID: 31899582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells.
    Xiang J; Zhang N; Sun H; Su L; Zhang C; Xu H; Feng J; Wang M; Chen J; Liu L; Shan J; Shen J; Yang Z; Wang G; Zhou H; Prieto J; Ávila MA; Liu C; Qian C
    Gastroenterology; 2020 Feb; 158(3):664-678.e24. PubMed ID: 31678303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.