These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30872723)

  • 1. Retinotopic and topographic analyses with gaze restriction for steady-state visual evoked potentials.
    Zhang N; Liu Y; Yin E; Deng B; Cao L; Jiang J; Zhou Z; Hu D
    Sci Rep; 2019 Mar; 9(1):4472. PubMed ID: 30872723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-performance SSVEP-based BCI using imperceptible flickers.
    Ming G; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36669202
    [No Abstract]   [Full Text] [Related]  

  • 8. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of steady-state visual and somatosensory evoked potentials for brain-computer interface control.
    Smith DJ; Varghese LA; Stepp CE; Guenther FH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1234-7. PubMed ID: 25570188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Interactions between Steady-State Visually Evoked Potentials at Nearby Flickering Frequencies.
    Liza K; Ray S
    J Neurosci; 2022 May; 42(19):3965-3974. PubMed ID: 35396325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a High-speed Mental Spelling System Combining Eye Tracking and SSVEP-based BCI with High Scalability.
    Lin X; Chen Z; Xu K; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6318-6322. PubMed ID: 31947287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an independent brain-computer interface using steady state visual evoked potentials.
    Allison BZ; McFarland DJ; Schalk G; Zheng SD; Jackson MM; Wolpaw JR
    Clin Neurophysiol; 2008 Feb; 119(2):399-408. PubMed ID: 18077208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA; Prieto A; Pelayo F; Morillas C
    Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.