These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30872797)

  • 21. Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing.
    Li H; Dong Y; Sun Y; Zhu E; Yang J; Liu X; Xue P; Xiao Y; Yang S; Wu J; Li X
    Planta; 2011 Mar; 233(3):611-9. PubMed ID: 21136073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.).
    Xu W; Cui Q; Li F; Liu A
    PLoS One; 2013; 8(7):e69995. PubMed ID: 23894571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing.
    Sun Y; Luo W; Chang H; Li Z; Zhou J; Li X; Zheng J; Hao M
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31547414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing.
    Chi X; Yang Q; Chen X; Wang J; Pan L; Chen M; Yang Z; He Y; Liang X; Yu S
    PLoS One; 2011; 6(11):e27530. PubMed ID: 22110666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.
    Jiang H; Wu P; Zhang S; Song C; Chen Y; Li M; Jia Y; Fang X; Chen F; Wu G
    PLoS One; 2012; 7(5):e36522. PubMed ID: 22574177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing.
    Luo Y; Zhang X; Luo Z; Zhang Q; Liu J
    BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small RNA and mRNA Sequencing Reveal the Roles of microRNAs Involved in Pomegranate Female Sterility.
    Chen L; Luo X; Yang X; Jing D; Xia X; Li H; Poudel K; Cao S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31952315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of miRNA encoded by Jatropha curcas from EST and GSS.
    Vishwakarma NP; Jadeja VJ
    Plant Signal Behav; 2013 Feb; 8(2):e23152. PubMed ID: 23299511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and comparison of flower bud microRNAs from yellow-horn species.
    Ao Y
    Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27808390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miR172 Regulates both Vegetative and Reproductive Development in the Perennial Woody Plant Jatropha curcas.
    Tang M; Bai X; Niu LJ; Chai X; Chen MS; Xu ZF
    Plant Cell Physiol; 2018 Dec; 59(12):2549-2563. PubMed ID: 30541045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and differential expression of two dehydrin cDNAs during maturation of Jatropha curcas seeds.
    Omar SA; Elsheery NI; Kalaji HM; Ebrahim MK; Pietkiewicz S; Lee CH; Allakhverdiev SI; Xu ZF
    Biochemistry (Mosc); 2013 May; 78(5):485-95. PubMed ID: 23848151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of miRNAs and Their Targets in Seed Development between Two Maize Inbred Lines by High-Throughput Sequencing and Degradome Analysis.
    Wu FY; Tang CY; Guo YM; Yang MK; Yang RW; Lu GH; Yang YH
    PLoS One; 2016; 11(7):e0159810. PubMed ID: 27463682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small RNA and Degradome Sequencing Reveal Complex Roles of miRNAs and Their Targets in Developing Wheat Grains.
    Li T; Ma L; Geng Y; Hao C; Chen X; Zhang X
    PLoS One; 2015; 10(10):e0139658. PubMed ID: 26426440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. System analysis of microRNAs in the development and aluminium stress responses of the maize root system.
    Kong X; Zhang M; Xu X; Li X; Li C; Ding Z
    Plant Biotechnol J; 2014 Oct; 12(8):1108-21. PubMed ID: 24985700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) microRNAs during seed development.
    DeBoer K; Melser S; Sperschneider J; Kamphuis LG; Garg G; Gao LL; Frick K; Singh KB
    BMC Genomics; 2019 Feb; 20(1):135. PubMed ID: 30764773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome-Wide Identification and Prediction of miRNAs and Their Targets in Paris polyphylla var. yunnanensis by High-Throughput Sequencing Analysis.
    Ling LZ; Zhang SD; Zhao F; Yang JL; Song WH; Guan SM; Li XS; Huang ZJ; Cheng L
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.