These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 30872843)

  • 1. Hybrid Profile-Gradient Approaches for the Estimation of Surface Fluxes.
    Basu S
    Boundary Layer Meteorol; 2019; 170(1):29-44. PubMed ID: 30872843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applicability of the generalized wind profile model over mountainous forests.
    Pang YC; Gao T; Li XF; Zhao TB; Wang XC; Li RP; Yu FY; Qu SL; Teng DX; Zhu JJ
    Ying Yong Sheng Tai Xue Bao; 2024 Mar; 35(3):577-586. PubMed ID: 38646744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the fluctuation of PM
    Ren Y; Zhang H; Wei W; Cai X; Song Y
    Sci Total Environ; 2020 Mar; 710():136398. PubMed ID: 31927293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic inversion for Monin-Obukhov similarity parameters from wind noise in a convective boundary layer.
    Hart CR; Nykaza ET; White MJ
    J Acoust Soc Am; 2018 Sep; 144(3):1258. PubMed ID: 30424635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal Wind Profile for Conventionally Neutral Atmospheric Boundary Layers.
    Liu L; Gadde SN; Stevens RJAM
    Phys Rev Lett; 2021 Mar; 126(10):104502. PubMed ID: 33784136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of refractive index structure parameter estimation for certain infrared bands.
    Sivaslıgil M; Erol CB; Polat ÖM; Sarı H
    Appl Opt; 2013 May; 52(14):3127-33. PubMed ID: 23669824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature, atmospheric condition, and particle size on extinction in a plume of volatile aerosol dispersed in the atmospheric surface layer.
    Tsang TT; Pai P; Korgaonkar NV
    Appl Opt; 1988 Feb; 27(3):593-8. PubMed ID: 20523645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalizing Monin-Obukhov Similarity Theory (1954) for Complex Atmospheric Turbulence.
    Stiperski I; Calaf M
    Phys Rev Lett; 2023 Mar; 130(12):124001. PubMed ID: 37027866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sound-speed gradient and refraction in the near-ground atmosphere.
    Wilson DK
    J Acoust Soc Am; 2003 Feb; 113(2):750-7. PubMed ID: 12597170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of surface wind speed and wind speed profiles in the Taklimakan Desert.
    Liu X; Kang Y; Chen H; Lu H
    PeerJ; 2022; 10():e13001. PubMed ID: 35402107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent Structures Modulate Atmospheric Surface Layer Flux-Gradient Relationships.
    Salesky ST; Anderson W
    Phys Rev Lett; 2020 Sep; 125(12):124501. PubMed ID: 33016733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the multi-fractal nature of the air flow and pollutant dispersion in a turbulent urban atmosphere and its implications for long range pollutant transport.
    Mouzourides P; Kyprianou A; Neophytou MK
    Chaos; 2021 Jan; 31(1):013110. PubMed ID: 33754747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow.
    Sigmund A; Dujardin J; Comola F; Sharma V; Huwald H; Melo DB; Hirasawa N; Nishimura K; Lehning M
    Boundary Layer Meteorol; 2022; 182(1):119-146. PubMed ID: 35068494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-scale modelling of the urban wind speed for air pollution applications.
    Ottosen TB; Ketzel M; Skov H; Hertel O; Brandt J; Kakosimos KE
    Sci Rep; 2019 Oct; 9(1):14279. PubMed ID: 31582769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulence in a small boreal lake: Consequences for air-water gas exchange.
    MacIntyre S; Bastviken D; Arneborg L; Crowe AT; Karlsson J; Andersson A; Gålfalk M; Rutgersson A; Podgrajsek E; Melack JM
    Limnol Oceanogr; 2021 Mar; 66(3):827-854. PubMed ID: 33888916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the Sensible Heat Flux Eddy Covariance-Based Exchange Coefficient to Calculate Latent Heat Flux from Moisture Mean Gradients Over Snow.
    González-Herrero S; Sigmund A; Haugeneder M; Hames O; Huwald H; Fiddes J; Lehning M
    Boundary Layer Meteorol; 2024; 190(5):24. PubMed ID: 38706472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers.
    Hancock PE; Hayden P
    Boundary Layer Meteorol; 2018; 168(1):29-57. PubMed ID: 30996390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model.
    Qing C; Wu X; Huang H; Tian Q; Zhu W; Rao R; Li X
    Opt Express; 2016 Sep; 24(18):20424-36. PubMed ID: 27607648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models.
    Quatresooz F; Griffiths R; Bardou L; Wilson R; Osborn J; Vanhoenacker-Janvier D; Oestges C
    Opt Express; 2023 Oct; 31(21):33850-33872. PubMed ID: 37859156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.