BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30873123)

  • 1. Reduced Skeletal Muscle Protein Turnover and Thyroid Hormone Metabolism in Adaptive Thermogenesis That Facilitates Body Fat Recovery During Weight Regain.
    Calonne J; Isacco L; Miles-Chan J; Arsenijevic D; Montani JP; Guillet C; Boirie Y; Dulloo AG
    Front Endocrinol (Lausanne); 2019; 10():119. PubMed ID: 30873123
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study.
    Di Munno C; Busiello RA; Calonne J; Salzano AM; Miles-Chan J; Scaloni A; Ceccarelli M; de Lange P; Lombardi A; Senese R; Cioffi F; Visser TJ; Peeters RP; Dulloo AG; Silvestri E
    Front Endocrinol (Lausanne); 2021; 12():631176. PubMed ID: 33746903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding.
    De Andrade PB; Neff LA; Strosova MK; Arsenijevic D; Patthey-Vuadens O; Scapozza L; Montani JP; Ruegg UT; Dulloo AG; Dorchies OM
    Front Physiol; 2015; 6():254. PubMed ID: 26441673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low 24-hour core body temperature as a thrifty metabolic trait driving catch-up fat during weight regain after caloric restriction.
    Calonne J; Arsenijevic D; Scerri I; Miles-Chan JL; Montani JP; Dulloo AG
    Am J Physiol Endocrinol Metab; 2019 Oct; 317(4):E699-E709. PubMed ID: 31430205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase.
    Summermatter S; Mainieri D; Russell AP; Seydoux J; Montani JP; Buchala A; Solinas G; Dulloo AG
    FASEB J; 2008 Mar; 22(3):774-85. PubMed ID: 17928359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction.
    Crescenzo R; Lionetti L; Mollica MP; Ferraro M; D'Andrea E; Mainieri D; Dulloo AG; Liverini G; Iossa S
    Diabetes; 2006 Aug; 55(8):2286-93. PubMed ID: 16873692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redistribution of glucose from skeletal muscle to adipose tissue during catch-up fat: a link between catch-up growth and later metabolic syndrome.
    Cettour-Rose P; Samec S; Russell AP; Summermatter S; Mainieri D; Carrillo-Theander C; Montani JP; Seydoux J; Rohner-Jeanrenaud F; Dulloo AG
    Diabetes; 2005 Mar; 54(3):751-6. PubMed ID: 15734852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for suppressed skeletal muscle thermogenesis in pathways from weight fluctuations to the insulin resistance syndrome.
    Dulloo AG
    Acta Physiol Scand; 2005 Aug; 184(4):295-307. PubMed ID: 16026421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adipose tissue plasticity during catch-up fat driven by thrifty metabolism: relevance for muscle-adipose glucose redistribution during catch-up growth.
    Summermatter S; Marcelino H; Arsenijevic D; Buchala A; Aprikian O; Assimacopoulos-Jeannet F; Seydoux J; Montani JP; Solinas G; Dulloo AG
    Diabetes; 2009 Oct; 58(10):2228-37. PubMed ID: 19602538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic mitochondrial energetics during catch-up fat after caloric restriction.
    Crescenzo R; Bianco F; Falcone I; Prisco M; Dulloo AG; Liverini G; Iossa S
    Metabolism; 2010 Aug; 59(8):1221-30. PubMed ID: 20045539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of fat storage via suppressed thermogenesis: a thrifty phenotype that predisposes individuals with catch-up growth to insulin resistance and obesity.
    Dulloo AG
    Horm Res; 2006; 65 Suppl 3():90-7. PubMed ID: 16612120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth.
    Crescenzo R; Samec S; Antic V; Rohner-Jeanrenaud F; Seydoux J; Montani JP; Dulloo AG
    Diabetes; 2003 May; 52(5):1090-7. PubMed ID: 12716737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for pancreatic beta-cell secretory hyperresponsiveness in catch-up growth hyperinsulinemia: Relevance to thrifty catch-up fat phenotype and risks for type 2 diabetes.
    Casimir M; de Andrade PB; Gjinovci A; Montani JP; Maechler P; Dulloo AG
    Nutr Metab (Lond); 2011 Jan; 8(1):2. PubMed ID: 21244699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thrifty 'catch-up fat' phenotype: its impact on insulin sensitivity during growth trajectories to obesity and metabolic syndrome.
    Dulloo AG; Jacquet J; Seydoux J; Montani JP
    Int J Obes (Lond); 2006 Dec; 30 Suppl 4():S23-35. PubMed ID: 17133232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for skeletal muscle stearoyl-CoA desaturase 1 in control of thermogenesis.
    Mainieri D; Summermatter S; Seydoux J; Montani JP; Rusconi S; Russell AP; Boss O; Buchala AJ; Dulloo AG
    FASEB J; 2006 Aug; 20(10):1751-3. PubMed ID: 16809433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance.
    Dulloo AG
    Best Pract Res Clin Endocrinol Metab; 2008 Feb; 22(1):155-71. PubMed ID: 18279786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mice lacking the thyroid hormone receptor-alpha gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity.
    Pelletier P; Gauthier K; Sideleva O; Samarut J; Silva JE
    Endocrinology; 2008 Dec; 149(12):6471-86. PubMed ID: 18719022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoregulation of body composition during weight recovery in human: the Minnesota Experiment revisited.
    Dulloo AG; Jacquet J; Girardier L
    Int J Obes Relat Metab Disord; 1996 May; 20(5):393-405. PubMed ID: 8696417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodothyronine deiodinases and the control of plasma and tissue thyroid hormone levels in hyperthyroid tilapia (Oreochromis niloticus).
    Van der Geyten S; Byamungu N; Reyns GE; Kühn ER; Darras VM
    J Endocrinol; 2005 Mar; 184(3):467-79. PubMed ID: 15749806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somatostatin inhibits rat hepatic T4-5'-deiodinase. The effect is independent of the associated hypoinsulinemia.
    Gavin LA; Moeller M
    J Clin Invest; 1983 Dec; 72(6):2020-30. PubMed ID: 6139387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.