These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30873193)

  • 1. Development of a Peanut Canopy Measurement System Using a Ground-Based LiDAR Sensor.
    Yuan H; Bennett RS; Wang N; Chamberlin KD
    Front Plant Sci; 2019; 10():203. PubMed ID: 30873193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.
    Sun S; Li C; Paterson AH; Jiang Y; Xu R; Robertson JS; Snider JL; Chee PW
    Front Plant Sci; 2018; 9():16. PubMed ID: 29403522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction of UAV LiDAR-derived grassland canopy height based on scan angle.
    Xu C; Zhao D; Zheng Z; Zhao P; Chen J; Li X; Zhao X; Zhao Y; Liu W; Wu B; Zeng Y
    Front Plant Sci; 2023; 14():1108109. PubMed ID: 37021312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops.
    Llop J; Gil E; Llorens J; Miranda-Fuentes A; Gallart M
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies.
    Montesano PM; Neigh C; Sun G; Duncanson L; Hoek JVD; Jon Ranson K
    Remote Sens Environ; 2017 Jul; 196():76-88. PubMed ID: 32848282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.
    Nie S; Wang C; Xi X; Luo S; Li G; Tian J; Wang H
    Opt Express; 2018 May; 26(10):A520-A540. PubMed ID: 29801258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Ground-Based LiDAR for Analysing Oil Palm Canopy Properties on the Occurrence of Basal Stem Rot (BSR) Disease.
    Husin NA; Khairunniza-Bejo S; Abdullah AF; Kassim MSM; Ahmad D; Azmi ANN
    Sci Rep; 2020 Apr; 10(1):6464. PubMed ID: 32296108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.
    Jimenez-Berni JA; Deery DM; Rozas-Larraondo P; Condon ATG; Rebetzke GJ; James RA; Bovill WD; Furbank RT; Sirault XRR
    Front Plant Sci; 2018; 9():237. PubMed ID: 29535749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees.
    Raman MG; Carlos EF; Sankaran S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation.
    Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Within and combined season prediction models for perennial ryegrass biomass yield using ground- and air-based sensor data.
    Nguyen PT; Shi F; Wang J; Badenhorst PE; Spangenberg GC; Smith KF; Daetwyler HD
    Front Plant Sci; 2022; 13():950720. PubMed ID: 36003811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.
    Friedli M; Kirchgessner N; Grieder C; Liebisch F; Mannale M; Walter A
    Plant Methods; 2016; 12():9. PubMed ID: 26834822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deployment of Lidar from a Ground Platform: Customizing a Low-Cost, Information-Rich and User-Friendly Application for Field Phenomics Research.
    Heun JT; Attalah S; French AN; Lehner KR; McKay JK; Mullen JL; Ottman MJ; Andrade-Sanchez P
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding.
    Walter JDC; Edwards J; McDonald G; Kuchel H
    Front Plant Sci; 2019; 10():1145. PubMed ID: 31611889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting seasonal change of broad-leaved woody canopy leaf area density profile using 3D portable LIDAR imaging.
    Hosoi F; Omasa K
    Funct Plant Biol; 2009 Nov; 36(11):998-1005. PubMed ID: 32688711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminating crop, weeds and soil surface with a terrestrial LIDAR sensor.
    Andújar D; Rueda-Ayala V; Moreno H; Rosell-Polo JR; Escolá A; Valero C; Gerhards R; Fernández-Quintanilla C; Dorado J; Griepentrog HW
    Sensors (Basel); 2013 Oct; 13(11):14662-75. PubMed ID: 24172283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Changes in Oil Palm Canopy Architecture From Basal Stem Rot Using Terrestrial Laser Scanner.
    Azuan NH; Khairunniza-Bejo S; Abdullah AF; Kassim MSM; Ahmad D
    Plant Dis; 2019 Dec; 103(12):3218-3225. PubMed ID: 31596688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.