These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30873193)

  • 21. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Changes in Oil Palm Canopy Architecture From Basal Stem Rot Using Terrestrial Laser Scanner.
    Azuan NH; Khairunniza-Bejo S; Abdullah AF; Kassim MSM; Ahmad D
    Plant Dis; 2019 Dec; 103(12):3218-3225. PubMed ID: 31596688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using virtual 3-D plant architecture to assess fungal pathogen splash dispersal in heterogeneous canopies: a case study with cultivar mixtures and a non-specialized disease causal agent.
    Gigot C; de Vallavieille-Pope C; Huber L; Saint-Jean S
    Ann Bot; 2014 Sep; 114(4):863-75. PubMed ID: 24989786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Varying Light and Dew on Ground Cover Estimates from Active NDVI, RGB, and LiDAR.
    Deery DM; Smith DJ; Davy R; Jimenez-Berni JA; Rebetzke GJ; James RA
    Plant Phenomics; 2021; 2021():9842178. PubMed ID: 34250506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach.
    Liebisch F; Kirchgessner N; Schneider D; Walter A; Hund A
    Plant Methods; 2015; 11():9. PubMed ID: 25793008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data.
    Huang H; Gong P; Cheng X; Clinton N; Li Z
    Sensors (Basel); 2009; 9(3):1541-58. PubMed ID: 22573971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3-D modeling of tomato canopies using a high-resolution portable scanning lidar for extracting structural information.
    Hosoi F; Nakabayashi K; Omasa K
    Sensors (Basel); 2011; 11(2):2166-2174. PubMed ID: 22319403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system.
    Kirchgessner N; Liebisch F; Yu K; Pfeifer J; Friedli M; Hund A; Walter A
    Funct Plant Biol; 2016 Feb; 44(1):154-168. PubMed ID: 32480554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ground-Based LiDAR Improves Phenotypic Repeatability of Above-Ground Biomass and Crop Growth Rate in Wheat.
    Deery DM; Rebetzke GJ; Jimenez-Berni JA; Condon AG; Smith DJ; Bechaz KM; Bovill WD
    Plant Phenomics; 2020; 2020():8329798. PubMed ID: 33313565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic detection of three-dimensional crop phenotypes based on a consumer-grade RGB-D camera.
    Song P; Li Z; Yang M; Shao Y; Pu Z; Yang W; Zhai R
    Front Plant Sci; 2023; 14():1097725. PubMed ID: 36778701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging.
    Hosoi F; Omasa K
    J Exp Bot; 2007; 58(12):3463-73. PubMed ID: 17977852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA.
    Griffith KT; Ponette-González AG; Curran LM; Weathers KC
    Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.
    Wasser L; Day R; Chasmer L; Taylor A
    PLoS One; 2013; 8(1):e54776. PubMed ID: 23382966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies.
    Wang X; Singh D; Marla S; Morris G; Poland J
    Plant Methods; 2018; 14():53. PubMed ID: 29997682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the Capability and Potential of LiDAR for Weed Detection.
    Shahbazi N; Ashworth MB; Callow JN; Mian A; Beckie HJ; Speidel S; Nicholls E; Flower KC
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach.
    Kamoske AG; Dahlin KM; Serbin SP; Stark SC
    Ecol Appl; 2021 Mar; 31(2):e02230. PubMed ID: 33015908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scan Pattern Characterization of Velodyne VLP-16 Lidar Sensor for UAS Laser Scanning.
    Lassiter HA; Whitley T; Wilkinson B; Abd-Elrahman A
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging Wheat Canopy Through Stereo Vision: Overcoming the Challenges of the Laboratory to Field Transition for Morphological Features Extraction.
    Dandrifosse S; Bouvry A; Leemans V; Dumont B; Mercatoris B
    Front Plant Sci; 2020; 11():96. PubMed ID: 32133023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating FPAR of maize canopy using airborne discrete-return LiDAR data.
    Luo S; Wang C; Xi X; Pan F
    Opt Express; 2014 Mar; 22(5):5106-17. PubMed ID: 24663850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.