These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 30873194)
1. Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis. Duan B; Fang S; Zhu R; Wu X; Wang S; Gong Y; Peng Y Front Plant Sci; 2019; 10():204. PubMed ID: 30873194 [TBL] [Abstract][Full Text] [Related]
2. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Gong Y; Duan B; Fang S; Zhu R; Wu X; Ma Y; Peng Y Plant Methods; 2018; 14():70. PubMed ID: 30151031 [TBL] [Abstract][Full Text] [Related]
3. Rice Yield Estimation Using Parcel-Level Relative Spectral Variables From UAV-Based Hyperspectral Imagery. Wang F; Wang F; Zhang Y; Hu J; Huang J; Xie J Front Plant Sci; 2019; 10():453. PubMed ID: 31024607 [TBL] [Abstract][Full Text] [Related]
4. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season. Gong Y; Yang K; Lin Z; Fang S; Wu X; Zhu R; Peng Y Plant Methods; 2021 Aug; 17(1):88. PubMed ID: 34376195 [TBL] [Abstract][Full Text] [Related]
5. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index. Zhou C; Gong Y; Fang S; Yang K; Peng Y; Wu X; Zhu R Front Plant Sci; 2022; 13():957870. PubMed ID: 35991436 [TBL] [Abstract][Full Text] [Related]
6. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y Front Plant Sci; 2018; 9():936. PubMed ID: 30034405 [TBL] [Abstract][Full Text] [Related]
7. Abundance considerations for modeling yield of rapeseed at the flowering stage. Li Y; Yuan N; Luo S; Yang K; Fang S; Peng Y; Gong Y Front Plant Sci; 2023; 14():1188216. PubMed ID: 37575912 [TBL] [Abstract][Full Text] [Related]
8. Inversion of Winter Wheat Growth Parameters and Yield Under Different Water Treatments Based on UAV Multispectral Remote Sensing. Han X; Wei Z; Chen H; Zhang B; Li Y; Du T Front Plant Sci; 2021; 12():609876. PubMed ID: 34093601 [TBL] [Abstract][Full Text] [Related]
9. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Duan B; Liu Y; Gong Y; Peng Y; Wu X; Zhu R; Fang S Plant Methods; 2019; 15():124. PubMed ID: 31695729 [TBL] [Abstract][Full Text] [Related]
10. Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages. Dai Y; Yu S; Ma T; Ding J; Chen K; Zeng G; Xie A; He P; Peng S; Zhang M Front Plant Sci; 2024; 15():1328834. PubMed ID: 38774220 [TBL] [Abstract][Full Text] [Related]
11. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Cen H; Wan L; Zhu J; Li Y; Li X; Zhu Y; Weng H; Wu W; Yin W; Xu C; Bao Y; Feng L; Shou J; He Y Plant Methods; 2019; 15():32. PubMed ID: 30972143 [TBL] [Abstract][Full Text] [Related]
12. Multispectral remote sensing for accurate acquisition of rice phenotypes: Impacts of radiometric calibration and unmanned aerial vehicle flying altitudes. Luo S; Jiang X; Yang K; Li Y; Fang S Front Plant Sci; 2022; 13():958106. PubMed ID: 36035659 [TBL] [Abstract][Full Text] [Related]
13. High-Throughput Phenotyping of Bioethanol Potential in Cereals Using UAV-Based Multi-Spectral Imagery. Ostos-Garrido FJ; de Castro AI; Torres-Sánchez J; Pistón F; Peña JM Front Plant Sci; 2019; 10():948. PubMed ID: 31396251 [TBL] [Abstract][Full Text] [Related]
14. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821 [TBL] [Abstract][Full Text] [Related]
15. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region. Sapkota S; Paudyal DR Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599 [TBL] [Abstract][Full Text] [Related]
16. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250 [TBL] [Abstract][Full Text] [Related]
17. Estimation of Rice Aboveground Biomass by Combining Canopy Spectral Reflectance and Unmanned Aerial Vehicle-Based Red Green Blue Imagery Data. Wang Z; Ma Y; Chen P; Yang Y; Fu H; Yang F; Raza MA; Guo C; Shu C; Sun Y; Yang Z; Chen Z; Ma J Front Plant Sci; 2022; 13():903643. PubMed ID: 35712565 [TBL] [Abstract][Full Text] [Related]
18. Non-destructive monitoring of amylose content in rice by UAV-based hyperspectral images. Wang F; Yi Q; Xie L; Yao X; Zheng J; Xu T; Li J; Chen S Front Plant Sci; 2022; 13():1035379. PubMed ID: 36388531 [TBL] [Abstract][Full Text] [Related]
19. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning. Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643 [TBL] [Abstract][Full Text] [Related]
20. Spatio-temporal mapping of leaf area index in rice: spectral indices and multi-scale texture comparison derived from different sensors. Li C; Teng X; Tan Y; Zhang Y; Zhang H; Xiao D; Luo S Front Plant Sci; 2024; 15():1445490. PubMed ID: 39309178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]