BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30873443)

  • 1. Laser-assisted vascular welding: optimization of acute and post-hydration welding strength.
    Pabittei DR; Heger M; Simonet M; van Tuijl S; van der Wal AC; van Bavel E; Balm R; de Mol BAJM
    J Clin Transl Res; 2015 Jul; 1(1):31-45. PubMed ID: 30873443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-assisted vessel welding: state of the art and future outlook.
    Pabittei DR; de Boon W; Heger M; van Golen RF; Balm R; Legemate DA; de Mol BA
    J Clin Transl Res; 2015 Sep; 1(2):1-18. PubMed ID: 30873446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries.
    Pabittei DR; Heger M; van Tuijl S; Simonet M; de Boon W; van der Wal AC; Balm R; de Mol BA
    J Vasc Surg; 2015 Jul; 62(1):200-9. PubMed ID: 24613189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable polymer scaffold, semi-solid solder, and single-spot lasing for increasing solder-tissue bonding in suture-free laser-assisted vascular repair.
    Pabittei DR; Heger M; Simonet M; van Tuijl S; van der Wal AC; Beek JF; Balm R; de Mol BA
    J Tissue Eng Regen Med; 2012 Nov; 6(10):803-12. PubMed ID: 22121070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Albumin-genipin solder for laser tissue repair.
    Lauto A; Foster LJ; Ferris L; Avolio A; Zwaneveld N; Poole-Warren LA
    Lasers Surg Med; 2004; 35(2):140-5. PubMed ID: 15334618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun poly(ɛ-caprolactone) scaffold for suture-free solder-mediated laser-assisted vessel repair.
    Pabittei DR; Heger M; Balm R; Meijer HE; de Mol B; Beek JF
    Photomed Laser Surg; 2011 Jan; 29(1):19-25. PubMed ID: 20738168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of suture-free laser-assisted vessel repair by solder-doped electrospun poly(ε-caprolactone) scaffold.
    Pabittei DR; Heger M; Beek JF; van Tuijl S; Simonet M; van der Wal AC; de Mol BA; Balm R
    Ann Biomed Eng; 2011 Jan; 39(1):223-34. PubMed ID: 20835847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.
    Sorg BS; Welch AJ
    Lasers Surg Med; 2001; 28(4):297-306. PubMed ID: 11344508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-solid albumin solder improved mechanical properties for laser tissue welding.
    Bleustein CB; Walker CN; Felsen D; Poppas DP
    Lasers Surg Med; 2000; 27(2):140-6. PubMed ID: 10960820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal effects of laser tissue soldering.
    McNally KM; Sorg BS; Welch AJ; Dawes JM; Owen ER
    Phys Med Biol; 1999 Apr; 44(4):983-1002; discussion 2 pages follow. PubMed ID: 10232810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability.
    Züger BJ; Ott B; Mainil-Varlet P; Schaffner T; Clémence JF; Weber HP; Frenz M
    Lasers Surg Med; 2001; 28(5):427-34. PubMed ID: 11413554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suture-free laser-assisted vessel repair using CO2 laser and liquid albumin solder.
    Wolf-de Jonge IC; Heger M; van Marle J; Balm R; Beek JF
    J Biomed Opt; 2008; 13(4):044032. PubMed ID: 19021359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polymer film reinforcement of an indocyanine green-doped liquid albumin solder for laser-assisted incision closure.
    Sorg BS; McNally KM; Welch AJ
    Lasers Surg Med; 2000; 27(1):73-81. PubMed ID: 10918296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs.
    Hoffman GT; Byrd BD; Soller EC; Heintzelman DL; McNally-Heintzelman KM
    Biomed Sci Instrum; 2003; 39():12-7. PubMed ID: 12724861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO₂ laser welding of corneal cuts with albumin solder using radiometric temperature control.
    Strassmann E; Livny E; Loya N; Kariv N; Ravid A; Katzir A; Gaton DD
    Ophthalmic Res; 2013; 50(3):174-9. PubMed ID: 24009005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser welding for vascular anastomosis using albumin solder: an approach for MID-CAB.
    Phillips AB; Ginsburg BY; Shin SJ; Soslow R; Ko W; Poppas DP
    Lasers Surg Med; 1999; 24(4):264-8. PubMed ID: 10327044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue welding with biodegradable polymer films-demonstration of acute strength reinforcement in vivo.
    Sorg BS; Welch AJ
    Lasers Surg Med; 2002; 31(5):339-42. PubMed ID: 12430151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sutureless microvascular anastomoses by a biodegradable laser-activated solid protein solder.
    Maitz PK; Trickett RI; Dekker P; Tos P; Dawes JM; Piper JA; Lanzetta M; Owen ER
    Plast Reconstr Surg; 1999 Nov; 104(6):1726-31. PubMed ID: 10541175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative in vitro study of tissue welding using a 808 nm diode laser and a Ho:YAG laser.
    Ott B; Züger BJ; Erni D; Banic A; Schaffner T; Weber HP; Frenz M
    Lasers Med Sci; 2001; 16(4):260-6. PubMed ID: 11702631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dural closure with laser tissue welding.
    Foyt D; Johnson JP; Kirsch AJ; Bruce JN; Wazen JJ
    Otolaryngol Head Neck Surg; 1996 Dec; 115(6):513-8. PubMed ID: 8969756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.