These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30874021)

  • 1. Improved ozone DIAL retrievals in the upper troposphere and lower stratosphere using an optimal estimation method.
    Farhani G; Sica RJ; Godin-Beekmann S; Ancellet G; Haefele A
    Appl Opt; 2019 Feb; 58(6):1374-1385. PubMed ID: 30874021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92 degrees N, 5.71 degrees E).
    Godin-Beekmann S; Porteneuve J; Garnier A
    J Environ Monit; 2003 Feb; 5(1):57-67. PubMed ID: 12619757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of ozonesonde measurements in the upper troposphere and lower Stratosphere in Northern India with reanalysis and chemistry-climate-model data.
    Fadnavis S; Sagalgile A; Sonbawne S; Vogel B; Peter T; Wienhold FG; Dirksen R; Oelsner P; Naja M; Müller R
    Sci Rep; 2023 May; 13(1):7133. PubMed ID: 37130920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].
    Ma PF; Chen LF; Zou MM; Zhang Y; Tao MH; Wang ZL; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3344-9. PubMed ID: 26964207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrieval of tropospheric ozone profiles using ground-based MAX-DOAS.
    Qian Y; Luo Y; Dou K; Zhou H; Xi L; Yang T; Zhang T; Si F
    Sci Total Environ; 2023 Jan; 857(Pt 2):159341. PubMed ID: 36228783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles.
    Browell EV; Carter AF; Shipley ST; Allen RJ; Butler CF; Mayo MN; Siviter JH; Hall WM
    Appl Opt; 1983 Feb; 22(4):522-34. PubMed ID: 18195821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method.
    Sica RJ; Haefele A
    Appl Opt; 2015 Mar; 54(8):1872-89. PubMed ID: 25968361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone differential absorption lidar algorithm intercomparison.
    Godin S; Carswell AI; Donovan DP; Claude H; Steinbrecht W; McDermid IS; McGee TJ; Gross MR; Nakane H; Swart DP; Bergwerff HB; Uchino O; von der Gathen P; Neuber R
    Appl Opt; 1999 Oct; 38(30):6225-36. PubMed ID: 18324146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of stratospheric ozone intrusions by windprofiler radars.
    Hocking WK; Carey-Smith T; Tarasick DW; Argall PS; Strong K; Rochon Y; Zawadzki I; Taylor PA
    Nature; 2007 Nov; 450(7167):281-4. PubMed ID: 17994096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis.
    Weidmann D; Reburn WJ; Smith KM
    Appl Opt; 2007 Oct; 46(29):7162-71. PubMed ID: 17932524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.
    Sica RJ; Haefele A
    Appl Opt; 2016 Feb; 55(4):763-77. PubMed ID: 26836078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First in situ UV profile across the UTLS accompanied by ozone measurement over the Tibetan Plateau.
    Zhang J; Xia X; Wu X
    J Environ Sci (China); 2020 Dec; 98():71-76. PubMed ID: 33097160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region.
    Fix A; Steinebach F; Wirth M; Schäfler A; Ehret G
    Appl Opt; 2019 Aug; 58(22):5892-5900. PubMed ID: 31503903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China.
    Zhao F; Liu C; Cai Z; Liu X; Bak J; Kim J; Hu Q; Xia C; Zhang C; Sun Y; Wang W; Liu J
    Sci Total Environ; 2021 Apr; 764():142886. PubMed ID: 33757247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithm improvement and validation of National Institute for Environmental Studies ozone differential absorption lidar at the Tsukuba Network for Detection of Stratospheric Change complementary station.
    Park CB; Nakane H; Sugimoto N; Matsui I; Sasano Y; Fujinuma Y; Ikeuchi I; Kurokawa J; Furuhashi N
    Appl Opt; 2006 May; 45(15):3561-76. PubMed ID: 16708104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation.
    Liu J; Rodriguez JM; Thompson AM; Logan JA; Douglass AR; Olsen MA; Steenrod SD; Posny F
    J Geophys Res Atmos; 2016 Jan; 121(1):521-537. PubMed ID: 29657911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational vibrational-rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment.
    Reichardt J; Bisson SE; Reichardt S; Weitkamp C; Neidhart B
    Appl Opt; 2000 Nov; 39(33):6072-9. PubMed ID: 18354612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozone Variability and Anomalies Observed during SENEX and SEAC
    Kuang S; Newchurch MJ; Thompson AM; Stauffer RM; Johnson BJ; Wang L
    J Geophys Res Atmos; 2017 Oct; 122(20):11227-11241. PubMed ID: 30057866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Increasing Surface Ozone and Tropospheric Ozone in Antarctica and Their Possible Drivers.
    Kumar P; Kuttippurath J; von der Gathen P; Petropavlovskikh I; Johnson B; McClure-Begley A; Cristofanelli P; Bonasoni P; Barlasina ME; Sánchez R
    Environ Sci Technol; 2021 Jul; 55(13):8542-8553. PubMed ID: 34132098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stratospheric temperature monitoring using a vibrational Raman lidar. Part 1: aerosols and ozone interferences.
    Faduilhe D; Keckhut P; Bencherif H; Robert L; Baldy S
    J Environ Monit; 2005 Apr; 7(4):357-64. PubMed ID: 15798803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.