These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30874059)

  • 1. Miniaturized ring-down spectrometer for CubeSat-based planetary science.
    Gibson BM
    Appl Opt; 2019 Mar; 58(8):1941-1949. PubMed ID: 30874059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Greenhouse Gas Concentrations from the 16U CubeSat Spacecraft Using Fourier Transform Infrared Spectroscopy.
    Mayorova V; Morozov A; Golyak I; Golyak I; Lazarev N; Melnikova V; Rachkin D; Svirin V; Tenenbaum S; Vintaykin I; Anfimov D; Fufurin I
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses.
    Landsberg J; Romanini D; Kerstel E
    Opt Lett; 2014 Apr; 39(7):1795-8. PubMed ID: 24686607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region.
    Long DA; Fleisher AJ; Liu Q; Hodges JT
    Opt Lett; 2016 Apr; 41(7):1612-5. PubMed ID: 27192300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor.
    Zhou S; Slaman M; Iannuzzi D
    Opt Express; 2017 Jul; 25(15):17541-17548. PubMed ID: 28789245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection.
    Ciaffoni L; Hancock G; Harrison JJ; van Helden JP; Langley CE; Peverall R; Ritchie GA; Wood S
    Anal Chem; 2013 Jan; 85(2):846-50. PubMed ID: 23231744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A developed optical-feedback cavity ring-down spectrometer and its application.
    Tan Z; Long X
    Appl Spectrosc; 2012 May; 66(5):492-5. PubMed ID: 22524954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upconversion-enabled array spectrometer for the mid-infrared, featuring kilohertz spectra acquisition rates.
    Wolf S; Kiessling J; Kunz M; Popko G; Buse K; Kühnemann F
    Opt Express; 2017 Jun; 25(13):14504-14515. PubMed ID: 28789036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile photoacoustic spectrometer based on a mid-infrared pulsed optical parametric oscillator.
    Lamard L; Balslev-Harder D; Peremans A; Petersen JC; Lassen M
    Appl Opt; 2019 Jan; 58(2):250-256. PubMed ID: 30645301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution spectral analysis of ammonia near 6.2 μm using a cw EC-QCL coupled with cavity ring-down spectroscopy.
    Maithani S; Mandal S; Maity A; Pal M; Pradhan M
    Analyst; 2018 Apr; 143(9):2109-2114. PubMed ID: 29645022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoacoustic spectrometer with a calculable cell constant for measurements of gases and aerosols.
    Havey DK; Bueno PA; Gillis KA; Hodges JT; Mulholland GW; van Zee RD; Zachariah MR
    Anal Chem; 2010 Oct; 82(19):7935-42. PubMed ID: 20804170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement.
    Gao B; Jiang W; Liu AW; Lu Y; Cheng CF; Cheng GS; Hu SM
    Rev Sci Instrum; 2010 Apr; 81(4):043105. PubMed ID: 20441323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically Switched Dual-Wavelength Cavity Ring-Down Spectrometer for High-Precision Isotope Ratio Measurements of Methane δD in the Near Infrared.
    Chen TL; Ober DC; Miri R; Bui TQ; Shen L; Okumura M
    Anal Chem; 2021 Apr; 93(16):6375-6384. PubMed ID: 33843199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology.
    Gupta P; Noone D; Galewsky J; Sweeney C; Vaughn BH
    Rapid Commun Mass Spectrom; 2009 Aug; 23(16):2534-42. PubMed ID: 19603459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength modulated cavity enhanced absorption spectroscopy of water in the 1.37 microm region.
    Vasudev R
    Appl Spectrosc; 2006 Aug; 60(8):926-30. PubMed ID: 16925930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope Mass Spectrometry in the Solar System Exploration.
    Yokota S
    Mass Spectrom (Tokyo); 2018; 7(2):S0076. PubMed ID: 30324079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared hollow waveguide gas sensors.
    Frey CM; Luxenburger F; Droege S; Mackoviak V; Mizaikoff B
    Appl Spectrosc; 2011 Nov; 65(11):1269-74. PubMed ID: 22054086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces.
    Edwards CS; Christensen PR
    Appl Opt; 2013 Apr; 52(11):2200-17. PubMed ID: 23670748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air.
    McHale LE; Hecobian A; Yalin AP
    Opt Express; 2016 Mar; 24(5):5523-5535. PubMed ID: 29092375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact two-step laser time-of-flight mass spectrometer for in situ analyses of aromatic organics on planetary missions.
    Getty SA; Brinckerhoff WB; Cornish T; Ecelberger S; Floyd M
    Rapid Commun Mass Spectrom; 2012 Dec; 26(23):2786-90. PubMed ID: 23124670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.