These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30874079)

  • 61. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.
    Kim BH; Kim MY; Chae YS
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29280970
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Novel compact dual-band LOROP camera with telecentricity.
    Park KW; Han JY; Bae J; Kim SW; Kim CW; Rhee HG; Yang HS; Lee YW
    Opt Express; 2012 May; 20(10):10921-32. PubMed ID: 22565716
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio.
    Lin YH; Chen MS; Lin HC
    Opt Express; 2011 Feb; 19(5):4714-21. PubMed ID: 21369302
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Non-telecentric projection lens design for an LED projector.
    Sun WS; Pan JW
    Appl Opt; 2017 Jan; 56(3):712-720. PubMed ID: 28157935
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mid-wave and long-wave infrared signature model and measurement of power lines against atmospheric path radiance.
    Leslie P; Furxhi O; Short R; Grimming R; Lautzenheiser A; Longcor T; Driggers R
    Opt Express; 2022 Jan; 30(1):563-575. PubMed ID: 35201231
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of three-element zoom lens based on refractive variable-focus lenses.
    Miks A; Novak J
    Opt Express; 2011 Nov; 19(24):23989-96. PubMed ID: 22109423
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient computation of 2D point-spread functions for diffractive lenses.
    Ayazgok S; Oktem FS
    Appl Opt; 2020 Jan; 59(2):445-451. PubMed ID: 32225335
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system.
    Lee J; Kwon WS; Kim KS; Kim S
    Rev Sci Instrum; 2011 Aug; 82(8):085105. PubMed ID: 21895273
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cost-Effective Design of a Miniaturized Zoom Lens for a Capsule Endoscope.
    Sun WS; Tien CL; Chen PY
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363835
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Four-group stabilized zoom lens design of two focal-length-variable elements.
    Hao Q; Cheng X; Du K
    Opt Express; 2013 Mar; 21(6):7758-67. PubMed ID: 23546157
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Imaging with an inverse-designed 50 mm-diameter f/1 MWIR flat lens with enhanced field of view and depth of focus.
    Hayward TM; Qadri SN; Santiago F; Cheung CC; Christophersen M; Brimhall N; Menon R
    Opt Lett; 2024 Sep; 49(18):5015-5018. PubMed ID: 39270218
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Diffraction efficiency analysis of dual-layer diffractive elements with oblique incident angles.
    Yang H
    Opt Express; 2023 Nov; 31(24):40221-40234. PubMed ID: 38041328
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Harmonic diffractive lenses.
    Sweeney DW; Sommargren GE
    Appl Opt; 1995 May; 34(14):2469-75. PubMed ID: 21052382
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Long-wave infrared transparent sulfur polymers enabled by symmetric thiol cross-linker.
    Lee M; Oh Y; Yu J; Jang SG; Yeo H; Park JJ; You NH
    Nat Commun; 2023 May; 14(1):2866. PubMed ID: 37208341
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mid-wave infrared beam steering based on high-efficiency liquid crystal diffractive waveplates.
    Gou F; Peng F; Ru Q; Lee YH; Chen H; He Z; Zhan T; Vodopyanov KL; Wu ST
    Opt Express; 2017 Sep; 25(19):22404-22410. PubMed ID: 29041551
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reconfigurable step-zoom metalens without optical and mechanical compensations.
    Fu R; Li Z; Zheng G; Chen M; Yang Y; Tao J; Wu L; Deng Q
    Opt Express; 2019 Apr; 27(9):12221-12230. PubMed ID: 31052766
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of two-element zoom systems based on variable power lenses.
    Miks A; Novak J
    Opt Express; 2010 Mar; 18(7):6797-810. PubMed ID: 20389699
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modeling diffraction efficiency effects when designing hybrid diffractive lens systems.
    Londoño C; Clark PP
    Appl Opt; 1992 May; 31(13):2248-52. PubMed ID: 20720886
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems.
    Yoon Y
    Appl Opt; 2000 Jun; 39(16):2551-8. PubMed ID: 18345170
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Automatic design of a mid-wavelength infrared dual-conjugate zoom system based on particle swarm optimization.
    Yu X; Wang H; Yao Y; Tan S; Xu Y; Ding Y
    Opt Express; 2021 May; 29(10):14868-14882. PubMed ID: 33985199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.