These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30874127)

  • 1. Generating a plasmonic vortex field with arbitrary topological charges and positions by meta-nanoslits.
    Tang B; Zhang B; Ding J
    Appl Opt; 2019 Feb; 58(4):833-840. PubMed ID: 30874127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation.
    Moon SW; Jeong HD; Lee S; Lee B; Ryu YS; Lee SY
    Opt Express; 2019 Jul; 27(14):19119-19129. PubMed ID: 31503675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.
    Chen RP; Chen Z; Chew KH; Li PG; Yu Z; Ding J; He S
    Sci Rep; 2015 May; 5():10628. PubMed ID: 26024434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of spin and angular momentum of light in plasmonic vortex.
    Cho SW; Park J; Lee SY; Kim H; Lee B
    Opt Express; 2012 Apr; 20(9):10083-94. PubMed ID: 22535099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.
    Ye J; Li Y; Han Y; Deng D; Su X; Song H; Gao J; Qu S
    Opt Lett; 2017 Aug; 42(16):3064-3067. PubMed ID: 28809873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focusing dynamics on circular distributed tapered metallic waveguides by means of plasmonic vortex lenses.
    Ongarello T; Parisi G; Garoli D; Mari E; Zilio P; Romanato F
    Opt Lett; 2012 Nov; 37(21):4516-8. PubMed ID: 23114348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilayer holey plasmonic vortex lenses for the far field transmission of pure orbital angular momentum light states.
    Zilio P; Parisi G; Garoli D; Carli M; Romanato F
    Opt Lett; 2014 Aug; 39(16):4899-902. PubMed ID: 25121903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic vortices for tunable manipulation of target particles, using arrays of elliptical holes in a gold layer.
    Ghanei AM; Aghili A; Darbari S; Talebi N
    Sci Rep; 2023 Jan; 13(1):54. PubMed ID: 36593270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities.
    Feng F; Si G; Min C; Yuan X; Somekh M
    Light Sci Appl; 2020; 9():95. PubMed ID: 32528669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens.
    Kim H; Park J; Cho SW; Lee SY; Kang M; Lee B
    Nano Lett; 2010 Feb; 10(2):529-36. PubMed ID: 20092328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Minimalist Single-Layer Metasurface for Arbitrary and Full Control of Vector Vortex Beams.
    Bao Y; Ni J; Qiu CW
    Adv Mater; 2020 Feb; 32(6):e1905659. PubMed ID: 31867803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency plasmonic vortex generation with near-infrared bifunctional metasurfaces.
    Chen Y; Zheng X; Liu F; Pan W; Wang Z; Liu M; Zhu Z; Wang Y; Li L; He Q; Zhou L; Sun S
    Opt Express; 2023 Oct; 31(21):34112-34122. PubMed ID: 37859175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film.
    Zhang Y; Zhang R; Li X; Ma L; Liu C; He C; Cheng C
    Opt Express; 2017 Dec; 25(25):32150-32160. PubMed ID: 29245879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deuterogenic Plasmonic Vortices.
    Yang Y; Wu L; Liu Y; Xie D; Jin Z; Li J; Hu G; Qiu CW
    Nano Lett; 2020 Sep; 20(9):6774-6779. PubMed ID: 32804512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.
    Fang C; Wu C; Gong Z; Zhao S; Sun A; Wei Z; Li H
    Opt Lett; 2018 Apr; 43(7):1538-1541. PubMed ID: 29601024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating plasmonic vortex based on meta-atoms with four rectangular slits.
    Gu K; Zhang Y; Zhao H; Sun M; Xu B; Ni B; Liu X; Xiong J
    Opt Express; 2023 Nov; 31(24):39927-39940. PubMed ID: 38041305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam.
    Yuan GH; Wang Q; Tan PS; Lin J; Yuan XC
    Nanotechnology; 2012 Sep; 23(38):385204. PubMed ID: 22948098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optically controlled holographic plasmonic vortex array for multiple metallic particles manipulation.
    Ju Z; Ma H; Zhang S; Xie X; Min C; Zhang Y; Yuan X
    Opt Lett; 2023 Dec; 48(24):6577-6580. PubMed ID: 38099803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Meta Lenses for Compound Plasmonic Vortex Field Generation and Control.
    Prinz E; Spektor G; Hartelt M; Mahro AK; Aeschlimann M; Orenstein M
    Nano Lett; 2021 May; 21(9):3941-3946. PubMed ID: 33939433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization induced reconfigurable multiple OAM vortex waves through a composite meta-surface beam former.
    Gu C; Yang R; Li Y
    Opt Express; 2021 Jun; 29(13):20121-20135. PubMed ID: 34266108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.