These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30874213)

  • 1. Bloch surface waves at the telecommunication wavelength with lithium niobate as the top layer for integrated optics.
    Kovalevich T; Belharet D; Robert L; Ulliac G; Kim MS; Herzig HP; Grosjean T; Bernal MP
    Appl Opt; 2019 Mar; 58(7):1757-1762. PubMed ID: 30874213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional polymer grating and prism on Bloch surface waves platform.
    Yu L; Barakat E; Di Francesco J; Herzig HP
    Opt Express; 2015 Dec; 23(25):31640-7. PubMed ID: 26698957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films.
    Kovalevich T; Ndao A; Suarez M; Tumenas S; Balevicius Z; Ramanavicius A; Baleviciute I; Häyrinen M; Roussey M; Kuittinen M; Grosjean T; Bernal MP
    Opt Lett; 2016 Dec; 41(23):5616-5619. PubMed ID: 27906253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse photonic design of functional elements that focus Bloch surface waves.
    Augenstein Y; Vetter A; Lahijani BV; Herzig HP; Rockstuhl C; Kim MS
    Light Sci Appl; 2018; 7():104. PubMed ID: 30564310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Q Thin-Film Lithium Niobate Microrings Fabricated with Wet Etching.
    Zhuang R; He J; Qi Y; Li Y
    Adv Mater; 2023 Jan; 35(3):e2208113. PubMed ID: 36325644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths.
    Badugu R; Mao J; Blair S; Zhang D; Descrovi E; Angelini A; Huo Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28727-28734. PubMed ID: 28725334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing concept based on Bloch surface waves and wavelength interrogation.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2020 Mar; 45(5):1096-1099. PubMed ID: 32108779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorophore Coupling to Internal Modes of Bragg Gratings.
    Badugu R; Mao J; Zhang D; Descrovi E; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2020 Oct; 124(41):22743-22752. PubMed ID: 34306293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimode Interference of Bloch Surface Electromagnetic Waves.
    Safronov KR; Gulkin DN; Antropov IM; Abrashitova KA; Bessonov VO; Fedyanin AA
    ACS Nano; 2020 Aug; 14(8):10428-10437. PubMed ID: 32806066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Q lasing via all-dielectric Bloch-surface-wave platform.
    Lee YC; Ho YL; Lin BW; Chen MH; Xing D; Daiguji H; Delaunay JJ
    Nat Commun; 2023 Oct; 14(1):6458. PubMed ID: 37833267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization controlled directional propagation of Bloch surface wave.
    Kovalevich T; Boyer P; Suarez M; Salut R; Kim MS; Herzig HP; Bernal MP; Grosjean T
    Opt Express; 2017 Mar; 25(5):5710-5715. PubMed ID: 28380827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range Bloch surface waves in photonic crystal ridges.
    Perani T; Liscidini M
    Opt Lett; 2020 Dec; 45(23):6534-6537. PubMed ID: 33258855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Bloch surface waves to cavity-mode resonances reaching an ultrahigh sensitivity and a figure of merit.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2023 Nov; 48(22):6068-6071. PubMed ID: 37966791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Bloch wave excitation platform based on few-layer photonic crystal deposited on D-shaped optical fiber.
    Gonzalez-Valencia E; Villar ID; Torres P
    Sci Rep; 2021 May; 11(1):11266. PubMed ID: 34050199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bloch Surface Waves in Open Fabry-Perot Microcavities.
    Marcucci N; Guo TL; Pélisset S; Roussey M; Grosjean T; Descrovi E
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bloch surface wave structures for high sensitivity detection and compact waveguiding.
    Khan MU; Corbett B
    Sci Technol Adv Mater; 2016; 17(1):398-409. PubMed ID: 27877891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating photorefractive effect in thin-film lithium niobate microring resonators.
    Xu Y; Shen M; Lu J; Surya JB; Sayem AA; Tang HX
    Opt Express; 2021 Feb; 29(4):5497-5504. PubMed ID: 33726085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano resonance and polarization transformation induced by interpolarization coupling of Bloch surface waves.
    Chen J; Wang P; Ming H; Lakowicz JR; Zhang D
    Phys Rev B; 2019 Mar; 99(11):. PubMed ID: 33842743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guided Bloch surface waves on ultrathin polymeric ridges.
    Descrovi E; Sfez T; Quaglio M; Brunazzo D; Dominici L; Michelotti F; Herzig HP; Martin OJ; Giorgis F
    Nano Lett; 2010 Jun; 10(6):2087-91. PubMed ID: 20446750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber.
    Gonzalez-Valencia E; Del Villar I; Torres P
    Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.