These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 30874420)
61. Reutilization of Silicon-Cutting Waste via Constructing Multilayer Si@SiO Sun Y; Wu J; Chen X; Lai C Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607159 [TBL] [Abstract][Full Text] [Related]
62. Facile synthesis of core-shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries. Jamaluddin A; Umesh B; Chen F; Chang JK; Su CY Nanoscale; 2020 May; 12(17):9616-9627. PubMed ID: 32315010 [TBL] [Abstract][Full Text] [Related]
63. Largely Improved Battery Performance Using a Microsized Silicon Skeleton Caged by Polypyrrole as Anode. Lv Y; Shang M; Chen X; Nezhad PS; Niu J ACS Nano; 2019 Oct; 13(10):12032-12041. PubMed ID: 31491084 [TBL] [Abstract][Full Text] [Related]
64. TiO Li J; Fan S; Xiu H; Wu H; Huang S; Wang S; Yin D; Deng Z; Xiong C Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049238 [TBL] [Abstract][Full Text] [Related]
65. A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium Ion Batteries. Liang J; Li X; Hou Z; Zhang W; Zhu Y; Qian Y ACS Nano; 2016 Feb; 10(2):2295-304. PubMed ID: 26789625 [TBL] [Abstract][Full Text] [Related]
66. Engineering the Core-Shell-Structured NCNTs-Ni Chen M; Jing QS; Sun HB; Xu JQ; Yuan ZY; Ren JT; Ding AX; Huang ZY; Dong MY Langmuir; 2019 May; 35(19):6321-6332. PubMed ID: 31009568 [TBL] [Abstract][Full Text] [Related]
67. A gradient-distributed binder with high energy dissipation for stable silicon anode. Zhang D; Ouyang Y; Wang Y; Liu L; Wang H; Cui J; Wang M; Li N; Zhao H; Ding S J Colloid Interface Sci; 2024 Nov; 673():312-320. PubMed ID: 38878366 [TBL] [Abstract][Full Text] [Related]
68. Tuning density of Si nanoparticles on graphene sheets in graphene-Si aerogels for stable lithium ion batteries. Hu X; Jin Y; Zhu B; Liu Z; Xu D; Guan Y; Sun M; Liu F J Colloid Interface Sci; 2018 Dec; 532():738-745. PubMed ID: 30125838 [TBL] [Abstract][Full Text] [Related]
69. Si Nanoparticles Coated with Co-Containing N-Doped Carbon: Preparation and Characterization as Li-Ion Battery Anode Materials. Lee SY; Kim SI; Yoon S J Nanosci Nanotechnol; 2019 Dec; 19(12):7753-7757. PubMed ID: 31196285 [TBL] [Abstract][Full Text] [Related]
70. Advanced inorganic lithium metasilicate binder for high-performance silicon anode. Wang X; Wang K; Zheng Z; Wan Z; Zhao J; Li H; Jiang W; Wu Z; Chen B; Tan Y; Ling M; Sun M; Liang C J Colloid Interface Sci; 2023 Dec; 652(Pt A):971-978. PubMed ID: 37634370 [TBL] [Abstract][Full Text] [Related]
71. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries. Huang S; Cheong LZ; Wang D; Shen C ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118 [TBL] [Abstract][Full Text] [Related]
72. Facile electrostatic assembly of Si@MXene superstructures for enhanced lithium-ion storage. Yang Q; Wang Z; Xia Y; Wu G; Chen C; Wang J; Rao P; Dong A J Colloid Interface Sci; 2020 Nov; 580():68-76. PubMed ID: 32682117 [TBL] [Abstract][Full Text] [Related]
73. A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating. Li FS; Wu YS; Chou J; Wu NL Chem Commun (Camb); 2015 May; 51(40):8429-31. PubMed ID: 25656469 [TBL] [Abstract][Full Text] [Related]
74. Stable Silicon Anode for Lithium-Ion Batteries through Covalent Bond Formation with a Binder via Esterification. Jung CH; Kim KH; Hong SH ACS Appl Mater Interfaces; 2019 Jul; 11(30):26753-26763. PubMed ID: 31276371 [TBL] [Abstract][Full Text] [Related]
75. Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries. Ngo DT; Le HTT; Pham XM; Park CN; Park CJ ACS Appl Mater Interfaces; 2017 Sep; 9(38):32790-32800. PubMed ID: 28875692 [TBL] [Abstract][Full Text] [Related]
76. One-Step Synthesis of Multi-Core-Void@Shell Structured Silicon Anode for High-Performance Lithium-Ion Batteries. Bi X; Tang T; Shi X; Ge X; Wu W; Zhang Z; Wang J Small; 2022 Sep; 18(37):e2200796. PubMed ID: 35961951 [TBL] [Abstract][Full Text] [Related]
77. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries. Li B; Yao F; Bae JJ; Chang J; Zamfir MR; Le DT; Pham DT; Yue H; Lee YH Sci Rep; 2015 Jan; 5():7659. PubMed ID: 25564245 [TBL] [Abstract][Full Text] [Related]
78. Preparation of a Si/SiO Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824 [TBL] [Abstract][Full Text] [Related]
79. Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries. Chen Y; Qian J; Cao Y; Yang H; Ai X ACS Appl Mater Interfaces; 2012 Jul; 4(7):3753-8. PubMed ID: 22757774 [TBL] [Abstract][Full Text] [Related]
80. Saclike-silicon nanoparticles anchored in ZIF-8 derived spongy matrix as high-performance anode for lithium-ion batteries. Wei Q; Chen YM; Hong XJ; Song CL; Yang Y; Si LP; Zhang M; Cai YP J Colloid Interface Sci; 2020 Apr; 565():315-325. PubMed ID: 31978794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]