These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30874552)

  • 1. Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements.
    Hwang B; Lee W; Yum SY; Jeon Y; Cho N; Jang G; Bang D
    Nat Commun; 2019 Mar; 10(1):1234. PubMed ID: 30874552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.
    Raj B; Gagnon JA; Schier AF
    Nat Protoc; 2018 Nov; 13(11):2685-2713. PubMed ID: 30353175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of CRISPR-Cas9 editing on evolving barcode and accuracy of lineage tracing.
    Liu F; Zhang X; Yang Y
    Sci Rep; 2024 Aug; 14(1):19213. PubMed ID: 39160220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lentivirus-based system for Cas9/gRNA expression and subsequent removal by Cre-mediated recombination.
    Carpenter MA; Law EK; Serebrenik A; Brown WL; Harris RS
    Methods; 2019 Mar; 156():79-84. PubMed ID: 30578845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish.
    Ye C; Chen Z; Liu Z; Wang F; He X
    J Genet Genomics; 2020 Feb; 47(2):85-91. PubMed ID: 32173285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM.
    Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S
    Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient RNA-guided base editing in rabbit.
    Liu Z; Chen M; Chen S; Deng J; Song Y; Lai L; Li Z
    Nat Commun; 2018 Jul; 9(1):2717. PubMed ID: 30006570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of Synthetic Cell Lineage Tracing Using Nuclease Barcoding.
    Schmidt ST; Zimmerman SM; Wang J; Kim SK; Quake SR
    ACS Synth Biol; 2017 Jun; 6(6):936-942. PubMed ID: 28264564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices.
    Yao M; Ren T; Pan Y; Xue X; Li R; Zhang L; Li Y; Huang K
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Editing in B-Lymphoma Cell Lines Using CRISPR/Cas9 Technology.
    Bai B; Myklebust JH; Wälchli S
    Methods Mol Biol; 2020; 2115():445-454. PubMed ID: 32006416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Base Editing in Viral Genome Based on Bacterial Artificial Chromosome Using a Cas9-Cytidine Deaminase Fused Protein.
    Zheng K; Jiang FF; Su L; Wang X; Chen YX; Chen HC; Liu ZF
    Virol Sin; 2020 Apr; 35(2):191-199. PubMed ID: 31792738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized Lineage Tracing for the Study and Manipulation of Heterogeneous Cell Populations.
    Gardner A; Morgan D; Al'Khafaji A; Brock A
    Methods Mol Biol; 2022; 2394():109-131. PubMed ID: 35094325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco.
    Hsu CT; Cheng YJ; Yuan YH; Hung WF; Cheng QW; Wu FH; Lee LY; Gelvin SB; Lin CS
    Plant Mol Biol; 2019 Nov; 101(4-5):355-371. PubMed ID: 31401729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Base Editing with CRISPR-Deaminase in Tomato.
    Shimatani Z; Ariizumi T; Fujikura U; Kondo A; Ezura H; Nishida K
    Methods Mol Biol; 2019; 1917():297-307. PubMed ID: 30610645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site.
    Wang Z; Wang W; Cui YC; Pan Q; Zhu W; Gendron P; Guo F; Cen S; Witcher M; Liang C
    J Virol; 2018 Oct; 92(20):. PubMed ID: 30068653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technique: Genome editing for cell lineage tracing.
    Burgess DJ
    Nat Rev Genet; 2016 Aug; 17(8):435. PubMed ID: 27291817
    [No Abstract]   [Full Text] [Related]  

  • 20. Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells.
    Jun S; Lim H; Chun H; Lee JH; Bang D
    Commun Biol; 2020 Apr; 3(1):154. PubMed ID: 32242071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.