These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 30874713)
21. Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization. Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922448 [TBL] [Abstract][Full Text] [Related]
22. Comparative Investigation of Activated Carbon Electrode and a Novel Activated Carbon/Graphene Oxide Composite Electrode for an Enhanced Capacitive Deionization. Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212895 [TBL] [Abstract][Full Text] [Related]
23. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480 [TBL] [Abstract][Full Text] [Related]
24. A binder free hierarchical mixed capacitive deionization electrode based on a polyoxometalate and polypyrrole for brackish water desalination. Liu N; Zhang Y; Xu X; Wang Y Dalton Trans; 2020 May; 49(19):6321-6327. PubMed ID: 32342067 [TBL] [Abstract][Full Text] [Related]
25. Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology. Siriwardane IW; Rathuwadu NPW; Dahanayake D; Sandaruwan C; de Silva RM; de Silva KMN Nanoscale Adv; 2021 May; 3(9):2585-2597. PubMed ID: 36134151 [TBL] [Abstract][Full Text] [Related]
26. Recent Advances in Faradic Electrochemical Deionization: System Architectures Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859 [TBL] [Abstract][Full Text] [Related]
27. Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation. Ma J; Zhang C; Yang F; Zhang X; Suss ME; Huang X; Liang P Environ Sci Technol; 2020 Jan; 54(2):1177-1185. PubMed ID: 31829572 [TBL] [Abstract][Full Text] [Related]
28. Faradaic Electrodes Open a New Era for Capacitive Deionization. Li Q; Zheng Y; Xiao D; Or T; Gao R; Li Z; Feng M; Shui L; Zhou G; Wang X; Chen Z Adv Sci (Weinh); 2020 Nov; 7(22):2002213. PubMed ID: 33240769 [TBL] [Abstract][Full Text] [Related]
29. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization. Cao J; Wang Y; Chen C; Yu F; Ma J J Colloid Interface Sci; 2018 May; 518():69-75. PubMed ID: 29438866 [TBL] [Abstract][Full Text] [Related]
30. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance. Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429 [TBL] [Abstract][Full Text] [Related]
31. Pseudocapacitive Coating for Effective Capacitive Deionization. Li M; Park HG ACS Appl Mater Interfaces; 2018 Jan; 10(3):2442-2450. PubMed ID: 29272105 [TBL] [Abstract][Full Text] [Related]
32. Enhanced Salt Removal Performance Using Graphene-Modified Sodium Vanadium Fluorophosphate in Flow Electrode Capacitive Deionization. Sun Y; Cheng Y; Yu F; Ma J ACS Appl Mater Interfaces; 2021 Nov; 13(45):53850-53858. PubMed ID: 34738780 [TBL] [Abstract][Full Text] [Related]
33. A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination. Liu H; Zhang J; Xu X; Wang Q Chemistry; 2020 Apr; 26(19):4403-4409. PubMed ID: 32017296 [TBL] [Abstract][Full Text] [Related]
34. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Ma J; Ma J; Zhang C; Song J; Dong W; Waite TD Water Res; 2020 Jan; 168():115186. PubMed ID: 31655437 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water. Zhang X; Pang M; Wei Y; Liu F; Zhang H; Zhou H Water Res; 2024 Mar; 251():121147. PubMed ID: 38277832 [TBL] [Abstract][Full Text] [Related]
36. A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism. Guo L; Mo R; Shi W; Huang Y; Leong ZY; Ding M; Chen F; Yang HY Nanoscale; 2017 Sep; 9(35):13305-13312. PubMed ID: 28858348 [TBL] [Abstract][Full Text] [Related]
37. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization. Hong SP; Yoon H; Lee J; Kim C; Kim S; Lee J; Lee C; Yoon J J Colloid Interface Sci; 2020 Mar; 564():1-7. PubMed ID: 31896423 [TBL] [Abstract][Full Text] [Related]
38. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene. Cai PF; Su CJ; Chang WT; Chang FC; Peng CY; Sun IW; Wei YL; Jou CJ; Wang HP Mar Pollut Bull; 2014 Aug; 85(2):733-7. PubMed ID: 24928455 [TBL] [Abstract][Full Text] [Related]
39. Spinel LiMn Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838 [TBL] [Abstract][Full Text] [Related]
40. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon. Bharath G; Hai A; Rambabu K; Ahmed F; Haidyrah AS; Ahmad N; Hasan SW; Banat F Environ Res; 2021 Jun; 197():111110. PubMed ID: 33864793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]