These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30874826)

  • 1. [MRI-Interactions with magnetically active and electrically conductive material].
    Schick F
    Radiologe; 2019 Oct; 59(10):860-868. PubMed ID: 30874826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution adapted finite element modeling of radio frequency interactions on conductive resonant structures in MRI.
    Ruoff J; Würslin C; Graf H; Schick F
    Magn Reson Med; 2012 May; 67(5):1444-52. PubMed ID: 22076824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ferromagnetic or conductive properties of metallic foreign objects embedded within the human body with magnetic iron detector (MID): Screening patients for MRI.
    Gianesin B; Zefiro D; Paparo F; Caminata A; Balocco M; Carrara P; Quintino S; Pinto V; Bacigalupo L; Rollandi GA; Marinelli M; Forni GL
    Magn Reson Med; 2015 May; 73(5):2030-7. PubMed ID: 25820253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [High field MR imaging: magnetic field interactions of aneurysm clips, coronary artery stents and iliac artery stents with a 3.0 Tesla MR system].
    Sommer T; Maintz D; Schmiedel A; Hackenbroch M; Hofer U; Urbach H; Pavlidis C; Träber F; Schild H; Höher M
    Rofo; 2004 May; 176(5):731-8. PubMed ID: 15122473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eddy-current induction in extended metallic parts as a source of considerable torsional moment.
    Graf H; Lauer UA; Schick F
    J Magn Reson Imaging; 2006 Apr; 23(4):585-90. PubMed ID: 16534754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of radio frequency electromagnetic fields and passive metallic implants--a brief review.
    Virtanen H; Keshvari J; Lappalainen R
    Bioelectromagnetics; 2006 Sep; 27(6):431-9. PubMed ID: 16622865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. rf enhancement and shielding in MRI caused by conductive implants: dependence on electrical parameters for a tube model.
    Graf H; Steidle G; Lauer UA; Schick F
    Med Phys; 2005 Feb; 32(2):337-42. PubMed ID: 15789577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel mechanistic model and computational approximation for electromagnetic safety evaluations of electrically short implants.
    Liorni I; Neufeld E; Kühn S; Murbach M; Zastrow E; Kainz W; Kuster N
    Phys Med Biol; 2018 Nov; 63(22):225015. PubMed ID: 30418958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interference of electronic implants in low frequency electromagnetic fields.
    Silny J
    Arch Mal Coeur Vaiss; 2003 Apr; 96 Spec No 3():30-4. PubMed ID: 12741329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of magnetically-induced E-fields on cardiac electric activity during MRI: A modeling study.
    Liu F; Xia L; Crozier S
    Magn Reson Med; 2003 Dec; 50(6):1180-8. PubMed ID: 14648565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radio frequency versus susceptibility effects of small conductive implants--a systematic MRI study on aneurysm clips at 1.5 and 3 T.
    Lauer UA; Graf H; Berger A; Claussen CD; Schick F
    Magn Reson Imaging; 2005 May; 23(4):563-9. PubMed ID: 15919602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of MRI issues at 7 T for 28 implants and other objects.
    Dula AN; Virostko J; Shellock FG
    AJR Am J Roentgenol; 2014 Feb; 202(2):401-5. PubMed ID: 24450683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of direct current in electrically active implants using MRI methods.
    Wojtczyk H; Graf H; Martirosian P; Ballweg V; Kraiger M; Pintaske J; Schick F
    Z Med Phys; 2011 May; 21(2):135-46. PubMed ID: 21277177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method.
    Acikel V; Atalar E
    Med Phys; 2011 Dec; 38(12):6623-32. PubMed ID: 22149844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of electric fields induced near metal implants by magnetic resonance imaging switched-gradient magnetic fields.
    Buechler DN; Durney CH; Christensen DA
    Magn Reson Imaging; 1997; 15(10):1157-66. PubMed ID: 9408136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging compatibility and safety of the SOUNDTEC Direct System.
    Dyer RK; Nakmali D; Dormer KJ
    Laryngoscope; 2006 Aug; 116(8):1321-33. PubMed ID: 16885731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI-Related Heating of Implants and Devices: A Review.
    Winter L; Seifert F; Zilberti L; Murbach M; Ittermann B
    J Magn Reson Imaging; 2021 Jun; 53(6):1646-1665. PubMed ID: 32458559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal implant localizers: frontiers and diagnostic feasibility.
    Trobec R; Avbelj V; Veselko M; Demsar F
    J Med Eng Technol; 1996; 20(3):134-40. PubMed ID: 8877755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the static magnetic field interactions for a newly developed magnetic ophthalmic implant at 3 Tesla MRI.
    Bodenstein AK; Lüpke M; Seiler C; Goblet F; Nikolic S; Hinze U; Chichkov B; Windhövel C; Bach JP; Harder L; Seifert H
    Rofo; 2019 Mar; 191(3):209-215. PubMed ID: 30308689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Physical interactions in MRI: Some rules of thumb for their reduction].
    Mühlenweg M; Schaefers G; Trattnig S
    Radiologe; 2015 Aug; 55(8):638-48. PubMed ID: 26220127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.