These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30874918)

  • 1. CRFVoter: gene and protein related object recognition using a conglomerate of CRF-based tools.
    Hemati W; Mehler A
    J Cheminform; 2019 Mar; 11(1):21. PubMed ID: 30874918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LSTMVoter: chemical named entity recognition using a conglomerate of sequence labeling tools.
    Hemati W; Mehler A
    J Cheminform; 2019 Jan; 11(1):3. PubMed ID: 30631966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical principle-based approach for gene and protein related object recognition.
    Lai PT; Huang MS; Yang TH; Hsu WL; Tsai RT
    J Cheminform; 2018 Dec; 10(1):64. PubMed ID: 30560325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BioCreative VI Precision Medicine Track system performance is constrained by entity recognition and variations in corpus characteristics.
    Chen Q; Panyam NC; Elangovan A; Verspoor K
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30576491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural network approach to chemical and gene/protein entity recognition in patents.
    Luo L; Yang Z; Yang P; Zhang Y; Wang L; Wang J; Lin H
    J Cheminform; 2018 Dec; 10(1):65. PubMed ID: 30564940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical entity extraction using CRF and an ensemble of extractors.
    Khabsa M; Giles CL
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S12. PubMed ID: 25810769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A linear classifier based on entity recognition tools and a statistical approach to method extraction in the protein-protein interaction literature.
    Lourenço A; Conover M; Wong A; Nematzadeh A; Pan F; Shatkay H; Rocha LM
    BMC Bioinformatics; 2011 Oct; 12 Suppl 8(Suppl 8):S12. PubMed ID: 22151823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases.
    Bhasuran B; Murugesan G; Abdulkadhar S; Natarajan J
    J Biomed Inform; 2016 Dec; 64():1-9. PubMed ID: 27634494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature.
    Tang B; Feng Y; Wang X; Wu Y; Zhang Y; Jiang M; Wang J; Xu H
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S8. PubMed ID: 25810779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DTranNER: biomedical named entity recognition with deep learning-based label-label transition model.
    Hong SK; Lee JG
    BMC Bioinformatics; 2020 Feb; 21(1):53. PubMed ID: 32046638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of medication information from discharge summaries using ensembles of classifiers.
    Doan S; Collier N; Xu H; Pham HD; Tu MP
    BMC Med Inform Decis Mak; 2012 May; 12():36. PubMed ID: 22564405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition.
    Xu K; Yang Z; Kang P; Wang Q; Liu W
    Comput Biol Med; 2019 May; 108():122-132. PubMed ID: 31003175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods.
    Zhang Y; Wang X; Hou Z; Li J
    JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining chemical patents with an ensemble of open systems.
    Leaman R; Wei CH; Zou C; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 27173521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomedical named entity extraction: some issues of corpus compatibilities.
    Ekbal A; Saha S; Sikdar UK
    Springerplus; 2013; 2():601. PubMed ID: 24294548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemlistem: chemical named entity recognition using recurrent neural networks.
    Corbett P; Boyle J
    J Cheminform; 2018 Dec; 10(1):59. PubMed ID: 30523437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System.
    Kim Y; Heider PM; Lally IR; Meystre SM
    JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entity recognition in the biomedical domain using a hybrid approach.
    Basaldella M; Furrer L; Tasso C; Rinaldi F
    J Biomed Semantics; 2017 Nov; 8(1):51. PubMed ID: 29122011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task.
    Wei CH; Peng Y; Leaman R; Davis AP; Mattingly CJ; Li J; Wiegers TC; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 26994911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.