BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 30874965)

  • 41. Augmented reality system for oral surgery using 3D auto stereoscopic visualization.
    Tran HH; Suenaga H; Kuwana K; Masamune K; Dohi T; Nakajima S; Liao H
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):81-8. PubMed ID: 22003603
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.
    Szpala S; Wierzbicki M; Guiraudon G; Peters TM
    IEEE Trans Med Imaging; 2005 Sep; 24(9):1207-15. PubMed ID: 16156358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A multi-GPU accelerated virtual-reality interaction simulation framework.
    Shao X; Xu W; Lin L; Zhang F
    PLoS One; 2019; 14(4):e0214852. PubMed ID: 30973907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A practical marker-less image registration method for augmented reality oral and maxillofacial surgery.
    Wang J; Shen Y; Yang S
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):763-773. PubMed ID: 30825070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display.
    Zinser MJ; Mischkowski RA; Dreiseidler T; Thamm OC; Rothamel D; Zöller JE
    Br J Oral Maxillofac Surg; 2013 Dec; 51(8):827-33. PubMed ID: 24045105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactive Flying Frustums (IFFs): spatially aware surgical data visualization.
    Fotouhi J; Unberath M; Song T; Gu W; Johnson A; Osgood G; Armand M; Navab N
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):913-922. PubMed ID: 30863981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. VirSSPA- a virtual reality tool for surgical planning workflow.
    Suárez C; Acha B; Serrano C; Parra C; Gómez T
    Int J Comput Assist Radiol Surg; 2009 Mar; 4(2):133-9. PubMed ID: 20033611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Virtual reality techniques. Application to anatomic visualization and orthopaedics training.
    Heng PA; Cheng CY; Wong TT; Wu W; Xu Y; Xie Y; Chui YP; Chan KM; Leung KS
    Clin Orthop Relat Res; 2006 Jan; 442():5-12. PubMed ID: 16394732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.
    Volonté F; Buchs NC; Pugin F; Spaltenstein J; Schiltz B; Jung M; Hagen M; Ratib O; Morel P
    Int J Med Robot; 2013 Sep; 9(3):e34-8. PubMed ID: 23239589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An integrated augmented reality surgical navigation platform using multi-modality imaging for guidance.
    Chan HHL; Haerle SK; Daly MJ; Zheng J; Philp L; Ferrari M; Douglas CM; Irish JC
    PLoS One; 2021; 16(4):e0250558. PubMed ID: 33930063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deformation-based augmented reality for hepatic surgery.
    Haouchine N; Dequidt J; Berger MO; Cotin S
    Stud Health Technol Inform; 2013; 184():182-8. PubMed ID: 23400153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surgery guided by mixed reality: presentation of a proof of concept.
    Gregory TM; Gregory J; Sledge J; Allard R; Mir O
    Acta Orthop; 2018 Oct; 89(5):480-483. PubMed ID: 30350756
    [No Abstract]   [Full Text] [Related]  

  • 53. A novel augmented reality to visualize the hidden organs and internal structure in surgeries.
    Singh P; Alsadoon A; Prasad PWC; Venkata HS; Ali RS; Haddad S; Alrubaie A
    Int J Med Robot; 2020 Apr; 16(2):e2055. PubMed ID: 31702094
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional laparoscopy: a new tool in the surgeon's armamentarium.
    Buchs NC; Morel P
    Surg Technol Int; 2013 Sep; 23():19-22. PubMed ID: 23700184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preliminary experience and feasibility test using a novel 3D virtual-reality microscope for otologic surgical procedures.
    Schär M; Röösli C; Huber A
    Acta Otolaryngol; 2021 Jan; 141(1):23-28. PubMed ID: 33185137
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Liver Surgery 4.0 - Planning, Volumetry, Navigation and Virtual Reality].
    Huber T; Huettl F; Hanke LI; Vradelis L; Heinrich S; Hansen C; Boedecker C; Lang H
    Zentralbl Chir; 2022 Aug; 147(4):361-368. PubMed ID: 35793686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.
    Besharati Tabrizi L; Mahvash M
    J Neurosurg; 2015 Jul; 123(1):206-11. PubMed ID: 25748303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3-D Tracking for Augmented Reality Using Combined Region and Dense Cues in Endoscopic Surgery.
    Wang R; Zhang M; Meng X; Geng Z; Wang FY
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1540-1551. PubMed ID: 29990163
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of advanced virtual reality and 3D computer assisted technologies in tele-3D-computer assisted surgery in rhinology.
    Klapan I; Vranjes Z; Prgomet D; Lukinović J
    Coll Antropol; 2008 Mar; 32(1):217-9. PubMed ID: 18494207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.
    Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N
    Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.