These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30874983)

  • 1. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels.
    Liu N; Skauge T; Landa-Marbán D; Hovland B; Thorbjørnsen B; Radu FA; Vik BF; Baumann T; Bødtker G
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):855-868. PubMed ID: 30874983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions.
    Zhang W; Sileika TS; Chen C; Liu Y; Lee J; Packman AI
    Biotechnol Bioeng; 2011 Nov; 108(11):2571-82. PubMed ID: 21656713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes.
    Chen MJ; Zhang Z; Bott TR
    Colloids Surf B Biointerfaces; 2005 Jun; 43(2):61-71. PubMed ID: 15913966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.
    Carrel M; Morales VL; Beltran MA; Derlon N; Kaufmann R; Morgenroth E; Holzner M
    Water Res; 2018 May; 134():280-291. PubMed ID: 29433078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.
    Mathieu L; Bertrand I; Abe Y; Angel E; Block JC; Skali-Lami S; Francius G
    Water Res; 2014 May; 55():175-84. PubMed ID: 24607313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detachment and diffusive-convective transport in an evolving heterogeneous two-dimensional biofilm hybrid model.
    Luna E; Domínguez-Zacarias G; Ferreira CP; Velasco-Hernandez JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061909. PubMed ID: 15697404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms.
    Chambless JD; Stewart PS
    Biotechnol Bioeng; 2007 Aug; 97(6):1573-84. PubMed ID: 17274065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.
    Bozorg A; Gates ID; Sen A
    J Microbiol Methods; 2015 Feb; 109():84-92. PubMed ID: 25479429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.
    Thomen P; Robert J; Monmeyran A; Bitbol AF; Douarche C; Henry N
    PLoS One; 2017; 12(4):e0175197. PubMed ID: 28403171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.
    Straub H; Eberl L; Zinn M; Rossi RM; Maniura-Weber K; Ren Q
    J Nanobiotechnology; 2020 Nov; 18(1):166. PubMed ID: 33176791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent model of deformation and detachment of a biofilm under fluid flow.
    Tierra G; Pavissich JP; Nerenberg R; Xu Z; Alber MS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25808342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mechanical Analysis of the Biofilm Streamer Nucleation and Geometry Characterization in Microfluidic Channels.
    Wang X; Hao M; Du X; Wang G; Matsushita J
    Comput Math Methods Med; 2016; 2016():7819403. PubMed ID: 27313658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm morphology as related to the porous media clogging.
    Kim JW; Choi H; Pachepsky YA
    Water Res; 2010 Feb; 44(4):1193-201. PubMed ID: 19604533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms.
    Lee JH; Kaplan JB; Lee WY
    Biomed Microdevices; 2008 Aug; 10(4):489-98. PubMed ID: 18204904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction and quantification of bacterial biofilm detachment using Glazier-Graner-Hogeweg method based model simulations.
    Sheraton MV; Melnikov VR; Sloot PMA
    J Theor Biol; 2019 Dec; 482():109994. PubMed ID: 31487498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic accumulation assay probes attachment of biofilm forming diatom cells.
    Nolte KA; Schwarze J; Rosenhahn A
    Biofouling; 2017 Aug; 33(7):531-543. PubMed ID: 28675050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy.
    Wagner M; Manz B; Volke F; Neu TR; Horn H
    Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.