These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30875196)

  • 1. How Defects Control the Out-of-Equilibrium Dissipative Evolution of a Supramolecular Tubule.
    Bochicchio D; Kwangmettatam S; Kudernac T; Pavan GM
    ACS Nano; 2019 Apr; 13(4):4322-4334. PubMed ID: 30875196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Exchange Pathways in Dynamic Supramolecular Polymers by Controlling Defects.
    de Marco AL; Bochicchio D; Gardin A; Doni G; Pavan GM
    ACS Nano; 2021 Sep; 15(9):14229-14241. PubMed ID: 34472834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution.
    Bochicchio D; Salvalaglio M; Pavan GM
    Nat Commun; 2017 Jul; 8(1):147. PubMed ID: 28747661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations.
    Bochicchio D; Pavan GM
    ACS Nano; 2017 Jan; 11(1):1000-1011. PubMed ID: 27992720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying and Tracking Defects in Dynamic Supramolecular Polymers.
    Gasparotto P; Bochicchio D; Ceriotti M; Pavan GM
    J Phys Chem B; 2020 Jan; 124(3):589-599. PubMed ID: 31888337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the Dynamics of a Supramolecular Polymer Determines Its Dynamic Adaptivity and Stimuli-Responsiveness: Structure-Dynamics-Property Relationships From Coarse-Grained Simulations.
    Torchi A; Bochicchio D; Pavan GM
    J Phys Chem B; 2018 Apr; 122(14):4169-4178. PubMed ID: 29543455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic supramolecular complexes constructed by orthogonal self-assembly.
    Hu XY; Xiao T; Lin C; Huang F; Wang L
    Acc Chem Res; 2014 Jul; 47(7):2041-51. PubMed ID: 24873508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[ n]arenes.
    Kakuta T; Yamagishi TA; Ogoshi T
    Acc Chem Res; 2018 Jul; 51(7):1656-1666. PubMed ID: 29889488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Chemotactic Supramolecular Nanoparticles: From Autonomous Surface Motion Following Specific Chemical Gradients to Multivalency-Controlled Disassembly.
    Lionello C; Gardin A; Cardellini A; Bochicchio D; Shivrayan M; Fernandez A; Thayumanavan S; Pavan GM
    ACS Nano; 2021 Oct; 15(10):16149-16161. PubMed ID: 34549951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-equilibrium supramolecular polymerization.
    Sorrenti A; Leira-Iglesias J; Markvoort AJ; de Greef TFA; Hermans TM
    Chem Soc Rev; 2017 Sep; 46(18):5476-5490. PubMed ID: 28349143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Azobenzene-Based Single-Component Supramolecular Polymer Responsive to Multiple Stimuli in Water.
    Fuentes E; Gerth M; Berrocal JA; Matera C; Gorostiza P; Voets IK; Pujals S; Albertazzi L
    J Am Chem Soc; 2020 Jun; 142(22):10069-10078. PubMed ID: 32395995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials.
    Liu J; Lan Y; Yu Z; Tan CS; Parker RM; Abell C; Scherman OA
    Acc Chem Res; 2017 Feb; 50(2):208-217. PubMed ID: 28075551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative out-of-equilibrium assembly of man-made supramolecular materials.
    van Rossum SAP; Tena-Solsona M; van Esch JH; Eelkema R; Boekhoven J
    Chem Soc Rev; 2017 Sep; 46(18):5519-5535. PubMed ID: 28703817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies.
    Lescop C
    Acc Chem Res; 2017 Apr; 50(4):885-894. PubMed ID: 28263559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Configurational Selection in Azobenzene-Based Supramolecular Systems Through Dual-Stimuli Processes.
    Tecilla P; Bonifazi D
    ChemistryOpen; 2020 May; 9(5):529-544. PubMed ID: 32373423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control over differentiation of a metastable supramolecular assembly in one and two dimensions.
    Fukui T; Kawai S; Fujinuma S; Matsushita Y; Yasuda T; Sakurai T; Seki S; Takeuchi M; Sugiyasu K
    Nat Chem; 2017 May; 9(5):493-499. PubMed ID: 28430199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise Control of Dissipative Self-assembly by Light and Electricity.
    Chen C; Guan Z
    Chemistry; 2023 May; 29(27):e202300347. PubMed ID: 36737408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward self-constructing materials: a systems chemistry approach.
    Giuseppone N
    Acc Chem Res; 2012 Dec; 45(12):2178-88. PubMed ID: 22533472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-Guest Binding-Site-Tunable Self-Assembly of Stimuli-Responsive Supramolecular Polymers.
    Yao H; Qi M; Liu Y; Tian W
    Chemistry; 2016 Jun; 22(25):8508-19. PubMed ID: 27167577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.