These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30875397)

  • 1. Mathematical model of Na-K-Cl homeostasis in ictal and interictal discharges.
    Chizhov AV; Amakhin DV; Zaitsev AV
    PLoS One; 2019; 14(3):e0213904. PubMed ID: 30875397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational model of interictal discharges triggered by interneurons.
    Chizhov AV; Amakhin DV; Zaitsev AV
    PLoS One; 2017; 12(10):e0185752. PubMed ID: 28977038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity.
    Fujiwara-Tsukamoto Y; Isomura Y; Imanishi M; Fukai T; Takada M
    Eur J Neurosci; 2007 May; 25(9):2713-25. PubMed ID: 17459104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial propagation of interictal discharges along the cortex.
    Chizhov AV; Amakhin DV; Zaitsev AV
    Biochem Biophys Res Commun; 2019 Jan; 508(4):1245-1251. PubMed ID: 30563766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimal model of interictal and ictal discharges "Epileptor-2".
    Chizhov AV; Zefirov AV; Amakhin DV; Smirnova EY; Zaitsev AV
    PLoS Comput Biol; 2018 May; 14(5):e1006186. PubMed ID: 29851959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ictal wavefront propagation in slices and simulations with conductance-based refractory density model.
    Chizhov AV; Amakhin DV; Smirnova EY; Zaitsev AV
    PLoS Comput Biol; 2022 Jan; 18(1):e1009782. PubMed ID: 35041661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shunting and hyperpolarizing GABAergic inhibition in the high-potassium model of ictogenesis in the developing rat hippocampus.
    Isaev D; Isaeva E; Khazipov R; Holmes GL
    Hippocampus; 2007; 17(3):210-9. PubMed ID: 17294460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex.
    Amakhin DV; Ergina JL; Chizhov AV; Zaitsev AV
    Front Cell Neurosci; 2016; 10():233. PubMed ID: 27790093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic and non-synaptic mechanisms of amygdala recruitment into temporolimbic epileptiform activities.
    Klueva J; Munsch T; Albrecht D; Pape HC
    Eur J Neurosci; 2003 Nov; 18(10):2779-91. PubMed ID: 14656327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus.
    Hennou S; Khalilov I; Diabira D; Ben-Ari Y; Gozlan H
    Eur J Neurosci; 2002 Jul; 16(2):197-208. PubMed ID: 12169102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMPAR-mediated Interictal Discharges in Neurons of Entorhinal Cortex: Experiment and Model.
    Chizhov AV; Amakhin DV; Zaizev AV; Magazanik LG
    Dokl Biol Sci; 2018 Mar; 479(1):47-50. PubMed ID: 29790025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus.
    McLean HA; Caillard O; Khazipov R; Ben-Ari Y; Gaiarsa JL
    J Neurophysiol; 1996 Aug; 76(2):1036-46. PubMed ID: 8871218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms and functional significance of a slow inhibitory potential in neurons of the lateral amygdala.
    Danober L; Pape HC
    Eur J Neurosci; 1998 Mar; 10(3):853-67. PubMed ID: 9753153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations.
    Kager H; Wadman WJ; Somjen GG
    J Neurophysiol; 2000 Jul; 84(1):495-512. PubMed ID: 10899222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA
    Chang YY; Gong XW; Gong HQ; Liang PJ; Zhang PM; Lu QC
    Neurosci Bull; 2018 Dec; 34(6):1007-1016. PubMed ID: 30128691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus.
    Gulyás AI; Sík A; Payne JA; Kaila K; Freund TF
    Eur J Neurosci; 2001 Jun; 13(12):2205-17. PubMed ID: 11454023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Efficacy of the KCC2 Cotransporter Promotes Epileptic Oscillations in a Subiculum Network Model.
    Buchin A; Chizhov A; Huberfeld G; Miles R; Gutkin BS
    J Neurosci; 2016 Nov; 36(46):11619-11633. PubMed ID: 27852771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do interictal discharges promote or control seizures? Experimental evidence from an in vitro model of epileptiform discharge.
    Avoli M
    Epilepsia; 2001; 42 Suppl 3():2-4. PubMed ID: 11520313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local mechanisms of phase-dependent postsynaptic modifications of NMDA-induced oscillations in the abducens motoneurons: a simulation study.
    Kopysova IL; Korogod SM; Durand J; Tyc-Dumont S
    J Neurophysiol; 1996 Aug; 76(2):1015-24. PubMed ID: 8871216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.