These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 30875509)
1. Multi-targeting magnetic hyaluronan capsules efficiently capturing circulating tumor cells. Ma S; Zhou X; Chen Q; Jiang P; Lan F; Yi Q; Wu Y J Colloid Interface Sci; 2019 Jun; 545():94-103. PubMed ID: 30875509 [TBL] [Abstract][Full Text] [Related]
2. Effective capture of circulating tumor cells from an S180-bearing mouse model using electrically charged magnetic nanoparticles. Li Z; Ruan J; Zhuang X J Nanobiotechnology; 2019 May; 17(1):59. PubMed ID: 31054582 [TBL] [Abstract][Full Text] [Related]
3. High-Efficiency Isolation and Rapid Identification of Heterogeneous Circulating Tumor Cells (CTCs) Using Dual-Antibody-Modified Fluorescent-Magnetic Nanoparticles. Wang Z; Sun N; Liu H; Chen C; Ding P; Yue X; Zou H; Xing C; Pei R ACS Appl Mater Interfaces; 2019 Oct; 11(43):39586-39593. PubMed ID: 31577122 [TBL] [Abstract][Full Text] [Related]
4. Dual-target recognition sandwich assay based on core-shell magnetic mesoporous silica nanoparticles for sensitive detection of breast cancer cells. Wang W; Liu S; Li C; Wang Y; Yan C Talanta; 2018 May; 182():306-313. PubMed ID: 29501157 [TBL] [Abstract][Full Text] [Related]
5. Near-Infrared Fluorescent Ag Ding C; Zhang C; Yin X; Cao X; Cai M; Xian Y Anal Chem; 2018 Jun; 90(11):6702-6709. PubMed ID: 29722265 [TBL] [Abstract][Full Text] [Related]
6. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Cui F; Ji J; Sun J; Wang J; Wang H; Zhang Y; Ding H; Lu Y; Xu D; Sun X Anal Bioanal Chem; 2019 Feb; 411(5):985-995. PubMed ID: 30612176 [TBL] [Abstract][Full Text] [Related]
7. Design of a Biocompatible and Ratiometric Fluorescent probe for the Capture, Detection, Release, and Reculture of Rare Number CTCs. Yu Y; Yang Y; Ding J; Meng S; Li C; Yin X Anal Chem; 2018 Nov; 90(22):13290-13298. PubMed ID: 30345741 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent identification of immunomagnetically captured CTCs using triplex-aptamer-targeted dendritic SiO Wang X; Du Y; Jing W; Cao C; Wu X; Yang K; Zhu L Mikrochim Acta; 2024 Jun; 191(7):424. PubMed ID: 38922365 [TBL] [Abstract][Full Text] [Related]
9. Immunoengineered magnetic-quantum dot nanobead system for the isolation and detection of circulating tumor cells. Zhang P; Draz MS; Xiong A; Yan W; Han H; Chen W J Nanobiotechnology; 2021 Apr; 19(1):116. PubMed ID: 33892737 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional luminescent immuno-magnetic nanoparticles: toward fast, efficient, cell-friendly capture and recovery of circulating tumor cells. Zhou X; Luo B; Kang K; Ma S; Sun X; Lan F; Yi Q; Wu Y J Mater Chem B; 2019 Jan; 7(3):393-400. PubMed ID: 32254726 [TBL] [Abstract][Full Text] [Related]
11. Hyaluronic acid-functionalized redox responsive immunomagnetic nanocarrier for circulating tumor cell capture and release. Zhang Y; Wang W; Guo H; Liu M; Zhu H; Sun H Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 33494073 [TBL] [Abstract][Full Text] [Related]
12. A platform for primary tumor origin identification of circulating tumor cells via antibody cocktail-based in vivo capture and specific aptamer-based multicolor fluorescence imaging strategy. Jia M; Mao Y; Wu C; Wang S; Zhang H Anal Chim Acta; 2019 Nov; 1082():136-145. PubMed ID: 31472702 [TBL] [Abstract][Full Text] [Related]
13. Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Wang G; Benasutti H; Jones JF; Shi G; Benchimol M; Pingle S; Kesari S; Yeh Y; Hsieh LE; Liu YT; Elias A; Simberg D Colloids Surf B Biointerfaces; 2018 Jan; 161():200-209. PubMed ID: 29080504 [TBL] [Abstract][Full Text] [Related]
14. Dual-Aptamer-Targeted Immunomagnetic Nanoparticles to Accurately Explore the Correlations between Circulating Tumor Cells and Gastric Cancer. Li C; Yang S; Li R; Gong S; Huang M; Sun Y; Xiong G; Wu D; Ji M; Chen Y; Gao C; Yu Y ACS Appl Mater Interfaces; 2022 Feb; 14(6):7646-7658. PubMed ID: 35104098 [TBL] [Abstract][Full Text] [Related]
15. Engineered red blood cells for capturing circulating tumor cells with high performance. Zhu DM; Wu L; Suo M; Gao S; Xie W; Zan MH; Liu A; Chen B; Wu WT; Ji LW; Chen LB; Huang HM; Guo SS; Zhang WF; Zhao XZ; Sun ZJ; Liu W Nanoscale; 2018 Mar; 10(13):6014-6023. PubMed ID: 29542756 [TBL] [Abstract][Full Text] [Related]
16. Size-matching hierarchical micropillar arrays for detecting circulating tumor cells in breast cancer patients' whole blood. Wang Z; Xu D; Wang X; Jin Y; Huo B; Wang Y; He C; Fu X; Lu N Nanoscale; 2019 Apr; 11(14):6677-6684. PubMed ID: 30899928 [TBL] [Abstract][Full Text] [Related]
17. Polyethylene Glycol-Functionalized Magnetic Fe₃O₄/P(MMA-AA) Composite Nanoparticles Enhancing Efficient Capture of Circulating Tumor Cells. Ma S; Zhan X; Yang M; Lan F; Wu Y; Gu Z J Nanosci Nanotechnol; 2018 Apr; 18(4):2278-2285. PubMed ID: 29442893 [TBL] [Abstract][Full Text] [Related]
18. Leukocyte-Repelling Biomimetic Immunomagnetic Nanoplatform for High-Performance Circulating Tumor Cells Isolation. Zhou X; Luo B; Kang K; Zhang Y; Jiang P; Lan F; Yi Q; Wu Y Small; 2019 Apr; 15(17):e1900558. PubMed ID: 30932344 [TBL] [Abstract][Full Text] [Related]
19. Capture and separation of circulating tumor cells using functionalized magnetic nanocomposites with simultaneous in situ chemotherapy. Liu C; Yang B; Chen X; Hu Z; Dai Z; Yang D; Zheng X; She X; Liu Q Nanotechnology; 2019 Jul; 30(28):285706. PubMed ID: 30849773 [TBL] [Abstract][Full Text] [Related]
20. Size-selective collection of circulating tumor cells using Vortex technology. Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]