These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30875554)
1. Development of acute and chronic toxicity bioassays using the pelagic copepod Gladioferens pectinatus. Charry MP; Northcott GL; Gaw S; Keesing V; Costello MJ; Tremblay LA Ecotoxicol Environ Saf; 2019 Jun; 174():611-617. PubMed ID: 30875554 [TBL] [Abstract][Full Text] [Related]
2. Development of acute and chronic sediment bioassays with the harpacticoid copepod Quinquelaophonte sp. Stringer TJ; Glover CN; Keesing V; Northcott GL; Gaw S; Tremblay LA Ecotoxicol Environ Saf; 2014 Jan; 99():82-91. PubMed ID: 24176293 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of the Marine Calanoid Copepod Pseudodiaptomus pelagicus to Copper, Phenanthrene, and Ammonia. Kennedy AJ; Biber TW; May LR; Lotufo GR; Farrar JD; Bednar AJ Environ Toxicol Chem; 2019 Jun; 38(6):1221-1230. PubMed ID: 30790342 [TBL] [Abstract][Full Text] [Related]
4. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus. Biandolino F; Parlapiano I; Faraponova O; Prato E Ecotoxicol Environ Saf; 2018 Jan; 147():327-333. PubMed ID: 28858705 [TBL] [Abstract][Full Text] [Related]
5. Development of a harpacticoid copepod bioassay: selection of species and relative sensitivity to zinc, atrazine and phenanthrene. Stringer TJ; Glover CN; Keesing V; Northcott GL; Tremblay LA Ecotoxicol Environ Saf; 2012 Jun; 80():363-71. PubMed ID: 22521687 [TBL] [Abstract][Full Text] [Related]
6. Investigating the Ecotoxicity of Select Emerging Organic Contaminants Toward the Marine Copepod Gladioferens pectinatus. Barrick A; Champeau O; Butler J; Wiles T; Boundy M; Tremblay LA Environ Toxicol Chem; 2022 Mar; 41(3):792-799. PubMed ID: 34918376 [TBL] [Abstract][Full Text] [Related]
7. Use of scanning and image recognition technology to semi-automate larval development assessment in toxicity tests with a tropical copepod. Binet MT; Gissi F; Stone S; Trinh C; McKnight KS Ecotoxicol Environ Saf; 2019 Sep; 180():1-11. PubMed ID: 31055079 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the ecotoxicity of urban estuarine sediment using benthic and pelagic copepod bioassays. Charry MP; Keesing V; Costello M; Tremblay LA PeerJ; 2018; 6():e4936. PubMed ID: 29868297 [TBL] [Abstract][Full Text] [Related]
9. Development of a larval bioassay using the calanoid copepod, Eurytemora affinis to assess the toxicity of sediment-bound pollutants. Lesueur T; Boulangé-Lecomte C; Xuereb B; Budzinski H; Cachot J; Vicquelin L; Giusti-Petrucciani N; Marie S; Petit F; Forget-Leray J Ecotoxicol Environ Saf; 2013 Aug; 94():60-6. PubMed ID: 23731865 [TBL] [Abstract][Full Text] [Related]
10. First transcriptome of the copepod Gladioferens pectinatus subjected to chronic contaminant exposures. Barrick A; Laroche O; Boundy M; Pearman JK; Wiles T; Butler J; Pochon X; Smith KF; Tremblay LA Aquat Toxicol; 2022 Feb; 243():106069. PubMed ID: 34968986 [TBL] [Abstract][Full Text] [Related]
11. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality. Buttino I; Vitiello V; Macchia S; Scuderi A; Pellegrini D Ecotoxicol Environ Saf; 2018 Mar; 149():1-9. PubMed ID: 29145160 [TBL] [Abstract][Full Text] [Related]
12. Impact of endocrine toxicants on survival, development, and reproduction of the estuarine copepod Eurytemora affinis (Poppe). Forget-Leray J; Landriau I; Minier C; Leboulenger F Ecotoxicol Environ Saf; 2005 Mar; 60(3):288-94. PubMed ID: 15590006 [TBL] [Abstract][Full Text] [Related]
13. Assessing the chronic toxicity of nickel to a tropical marine gastropod and two crustaceans. Gissi F; Stauber JL; Binet MT; Trenfield MA; Van Dam JW; Jolley DF Ecotoxicol Environ Saf; 2018 Sep; 159():284-292. PubMed ID: 29758510 [TBL] [Abstract][Full Text] [Related]
14. Acute and chronic toxicity of cadmium on the copepod Pseudodiaptomus annandalei: A life history traits approach. Kadiene EU; Meng PJ; Hwang JS; Souissi S Chemosphere; 2019 Oct; 233():396-404. PubMed ID: 31176903 [TBL] [Abstract][Full Text] [Related]
15. Assessing the Efficacy of a Sediment Remediation Program Using Benthic and Pelagic Copepod Bioassays. Charry MP; Keesing V; Gaw S; Costello MJ; Champeau O; Tremblay LA Environ Toxicol Chem; 2020 Feb; 39(2):492-499. PubMed ID: 31692086 [TBL] [Abstract][Full Text] [Related]
16. Could some procedures commonly used in bioassays with the copepod Acartia tonsa Dana 1849 distort results? Lopes LFP; Agostini VO; Muxagata E Ecotoxicol Environ Saf; 2018 Apr; 150():353-365. PubMed ID: 29246582 [TBL] [Abstract][Full Text] [Related]
17. Acute toxicity of chlorpyrifos to embryo and larvae of banded gourami Trichogaster fasciata. Sumon KA; Saha S; van den Brink PJ; Peeters ET; Bosma RH; Rashid H J Environ Sci Health B; 2017 Feb; 52(2):92-98. PubMed ID: 28099091 [TBL] [Abstract][Full Text] [Related]
18. Copper toxicity in the marine copepod Tigropus japonicus: low variability and high reproducibility of repeated acute and life-cycle tests. Kwok KW; Leung KM; Bao VW; Lee JS Mar Pollut Bull; 2008; 57(6-12):632-6. PubMed ID: 18474379 [TBL] [Abstract][Full Text] [Related]
19. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus. Bao VW; Lui GC; Leung KM Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222 [TBL] [Abstract][Full Text] [Related]
20. A short life-cycle test with the epibenthic copepod Nitocra spinipes for sediment toxicity assessment. Perez-Landa V; Simpson SL Environ Toxicol Chem; 2011 Jun; 30(6):1430-9. PubMed ID: 21360580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]