These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 30875558)
1. Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model. Liang J; Li Z; Yang Q; Lei X; Kang A; Li S Ecotoxicol Environ Saf; 2019 Jun; 174():649-657. PubMed ID: 30875558 [TBL] [Abstract][Full Text] [Related]
2. Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Bera A; Mukhopadhyay BP; Das S Chemosphere; 2022 Nov; 307(Pt 2):135831. PubMed ID: 35944685 [TBL] [Abstract][Full Text] [Related]
3. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model. Sadat-Noori M; Ebrahimi K Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205 [TBL] [Abstract][Full Text] [Related]
4. Assessment of groundwater vulnerability by applying the modified DRASTIC model in Beihai City, China. Wu X; Li B; Ma C Environ Sci Pollut Res Int; 2018 May; 25(13):12713-12727. PubMed ID: 29468400 [TBL] [Abstract][Full Text] [Related]
5. Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Saha D; Alam F Environ Monit Assess; 2014 Dec; 186(12):8741-63. PubMed ID: 25297711 [TBL] [Abstract][Full Text] [Related]
6. A modified DRASTIC model for groundwater vulnerability assessment using connecting path and analytic hierarchy process methods. Baki AM; Ghavami SM Environ Sci Pollut Res Int; 2023 Nov; 30(51):111270-111283. PubMed ID: 37812345 [TBL] [Abstract][Full Text] [Related]
7. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Huan H; Wang J; Teng Y Sci Total Environ; 2012 Dec; 440():14-23. PubMed ID: 22974721 [TBL] [Abstract][Full Text] [Related]
8. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Babiker IS; Mohamed MA; Hiyama T; Kato K Sci Total Environ; 2005 Jun; 345(1-3):127-40. PubMed ID: 15919534 [TBL] [Abstract][Full Text] [Related]
9. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Shrestha S; Semkuyu DJ; Pandey VP Sci Total Environ; 2016 Jun; 556():23-35. PubMed ID: 26971207 [TBL] [Abstract][Full Text] [Related]
10. Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model: a case in Weibei Plain, China. Hu X; Ma C; Qi H; Guo X Environ Sci Pollut Res Int; 2018 Nov; 25(32):32524-32539. PubMed ID: 30238262 [TBL] [Abstract][Full Text] [Related]
11. Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. Oke SA Int J Environ Res Public Health; 2020 Apr; 17(7):. PubMed ID: 32290197 [TBL] [Abstract][Full Text] [Related]
12. Mapping the groundwater vulnerability for pollution at the pan African scale. Ouedraogo I; Defourny P; Vanclooster M Sci Total Environ; 2016 Feb; 544():939-53. PubMed ID: 26771208 [TBL] [Abstract][Full Text] [Related]
13. Assessment of shallow aquifer vulnerability to fluoride contamination using modified AHP-DRASTICH model as a tool for effective groundwater management, a case study in Yuncheng Basin, China. Wang W; Mwiathi NF; Li C; Luo W; Zhang X; An Y; Zhang M; Gong P; Liu J; Gao X Chemosphere; 2022 Jan; 286(Pt 2):131601. PubMed ID: 34352540 [TBL] [Abstract][Full Text] [Related]
14. Assessment and validation of groundwater vulnerability to nitrate in porous aquifers based on a DRASTIC method modified by projection pursuit dynamic clustering model. Jia Z; Bian J; Wang Y; Wan H; Sun X; Li Q J Contam Hydrol; 2019 Oct; 226():103522. PubMed ID: 31301548 [TBL] [Abstract][Full Text] [Related]
15. DRASTIC framework improvement using Stepwise Weight Assessment Ratio Analysis (SWARA) and combination of Genetic Algorithm and Entropy. Torkashvand M; Neshat A; Javadi S; Yousefi H Environ Sci Pollut Res Int; 2021 Sep; 28(34):46704-46724. PubMed ID: 33201500 [TBL] [Abstract][Full Text] [Related]
16. Groundwater vulnerability to pollution mapping of Ranchi district using GIS. Krishna R; Iqbal J; Gorai AK; Pathak G; Tuluri F; Tchounwou PB Appl Water Sci; 2015 Dec; 5(4):345-358. PubMed ID: 26557470 [TBL] [Abstract][Full Text] [Related]
17. A GIS-based approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Bou-Areg and Gareb aquifers, northeastern Morocco. Elmeknassi M; El Mandour A; Elgettafi M; Himi M; Tijani R; El Khantouri FA; Casas A Environ Sci Pollut Res Int; 2021 Oct; 28(37):51612-51631. PubMed ID: 33990916 [TBL] [Abstract][Full Text] [Related]
18. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models. Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423 [TBL] [Abstract][Full Text] [Related]
19. Modelling hydrogeological parameters to assess groundwater pollution and vulnerability in Kashan aquifer: Novel calibration-validation of multivariate statistical methods and human health risk considerations. Samadi J Environ Res; 2022 Aug; 211():113028. PubMed ID: 35283077 [TBL] [Abstract][Full Text] [Related]
20. Vulnerability Assessment of Farmland Groundwater Pollution around Traditional Industrial Parks Based on the Improved DRASTIC Model-A Case Study in Shifang City, Sichuan Province, China. Zhang Y; Qin H; An G; Huang T Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]