These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 30875562)
1. Understanding the influence of carbon nanomaterials on microbial communities. Chen M; Sun Y; Liang J; Zeng G; Li Z; Tang L; Zhu Y; Jiang D; Song B Environ Int; 2019 May; 126():690-698. PubMed ID: 30875562 [TBL] [Abstract][Full Text] [Related]
2. Comparative morpho-physiological and biochemical responses of Capsicum annuum L. plants to multi-walled carbon nanotubes, fullerene C60 and graphene nanoplatelets exposure under water deficit stress. Ahmadi SZ; Zahedi B; Ghorbanpour M; Mumivand H BMC Plant Biol; 2024 Feb; 24(1):116. PubMed ID: 38365618 [TBL] [Abstract][Full Text] [Related]
3. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Azizi-Lalabadi M; Hashemi H; Feng J; Jafari SM Adv Colloid Interface Sci; 2020 Oct; 284():102250. PubMed ID: 32966964 [TBL] [Abstract][Full Text] [Related]
4. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Hao Y; Ma C; Zhang Z; Song Y; Cao W; Guo J; Zhou G; Rui Y; Liu L; Xing B Environ Pollut; 2018 Jan; 232():123-136. PubMed ID: 28947315 [TBL] [Abstract][Full Text] [Related]
5. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Peng Z; Liu X; Zhang W; Zeng Z; Liu Z; Zhang C; Liu Y; Shao B; Liang Q; Tang W; Yuan X Environ Int; 2020 Jan; 134():105298. PubMed ID: 31765863 [TBL] [Abstract][Full Text] [Related]
6. Accumulation, transformation and subcellular distribution of arsenite associated with five carbon nanomaterials in freshwater zebrafish specific-tissues. Wang X; Liu L; Liang D; Liu Y; Zhao Q; Huang P; Li X; Fan W J Hazard Mater; 2021 Aug; 415():125579. PubMed ID: 33721782 [TBL] [Abstract][Full Text] [Related]
7. How do proteins 'response' to common carbon nanomaterials? Wang X; Zhu Y; Chen M; Yan M; Zeng G; Huang D Adv Colloid Interface Sci; 2019 Aug; 270():101-107. PubMed ID: 31200262 [TBL] [Abstract][Full Text] [Related]
8. Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing. Rahman MA; Abul Barkat H; Harwansh RK; Deshmukh R Curr Pharm Biotechnol; 2022; 23(12):1483-1496. PubMed ID: 35264085 [TBL] [Abstract][Full Text] [Related]
9. Novel impacts of functionalized multi-walled carbon nanotubes in plants: promotion of nodulation and nitrogenase activity in the rhizobium-legume system. Yuan Z; Zhang Z; Wang X; Li L; Cai K; Han H Nanoscale; 2017 Jul; 9(28):9921-9937. PubMed ID: 28678233 [TBL] [Abstract][Full Text] [Related]
10. Effect of carbon nanomaterials on functional diversity and structure of soil microbial community under single and repeated exposures. Liu W; Wang Z; Chai G; Deng W Environ Sci Pollut Res Int; 2023 Nov; 30(54):115896-115906. PubMed ID: 37897582 [TBL] [Abstract][Full Text] [Related]
11. Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Forstner C; Orton TG; Wang P; Kopittke PM; Dennis PG Sci Total Environ; 2019 Sep; 682():356-363. PubMed ID: 31125749 [TBL] [Abstract][Full Text] [Related]
12. Ecological Effects of Single-Walled Carbon Nanotubes on Soil Microbial Communities and Soil Fertility. Qian H; Ke M; Qu Q; Li X; Du B; Lu T; Sun L; Pan X Bull Environ Contam Toxicol; 2018 Oct; 101(4):536-542. PubMed ID: 30209559 [TBL] [Abstract][Full Text] [Related]
13. Comparing in vitro cytotoxicity of graphite, short multi-walled carbon nanotubes, and long multi-walled carbon nanotubes. Rezazadeh Azari M; Mohammadian Y Environ Sci Pollut Res Int; 2020 May; 27(13):15401-15406. PubMed ID: 32077025 [TBL] [Abstract][Full Text] [Related]
14. Intravenous injection of unfunctionalized carbon-based nanomaterials confirms the minimal toxicity observed in aqueous and dietary exposures in juvenile rainbow trout (Oncorhynchus mykiss). Boyle D; Sutton PA; Handy RD; Henry TB Environ Pollut; 2018 Jan; 232():191-199. PubMed ID: 28941714 [TBL] [Abstract][Full Text] [Related]
15. Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials. Jiang T; Lin Y; Amadei CA; Gou N; Rahman SM; Lan J; Vecitis CD; Gu AZ J Hazard Mater; 2021 Sep; 418():126282. PubMed ID: 34111749 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Wang X; Liu X; Han H Colloids Surf B Biointerfaces; 2013 Mar; 103():136-42. PubMed ID: 23201730 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials. Petersen E; Barrios AC; Bjorkland R; Goodwin DG; Li J; Waissi G; Henry T Environ Int; 2023 Mar; 173():107650. PubMed ID: 36848829 [TBL] [Abstract][Full Text] [Related]
18. Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations. Arndt DA; Chen J; Moua M; Klaper RD Environ Toxicol Chem; 2014 Mar; 33(3):541-7. PubMed ID: 24442719 [TBL] [Abstract][Full Text] [Related]
19. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. Chen A; Wang B; Feng Q; Wang R Ecotoxicol Environ Saf; 2024 Oct; 285():117019. PubMed ID: 39317077 [TBL] [Abstract][Full Text] [Related]
20. A new capacity of gut microbiota: Fermentation of engineered inorganic carbon nanomaterials into endogenous organic metabolites. Cui X; Wang X; Chang X; Bao L; Wu J; Tan Z; Chen J; Li J; Gao X; Ke PC; Chen C Proc Natl Acad Sci U S A; 2023 May; 120(20):e2218739120. PubMed ID: 37155879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]