BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 30875781)

  • 41. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy.
    Li Y; Yang X; Plummer R; Hayashi Y; Deng XS; Nie YZ; Taniguchi H
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities.
    Whye D; Wood D; Kim KH; Chen C; Makhortova N; Sahin M; Buttermore ED
    Curr Protoc; 2022 Oct; 2(10):e568. PubMed ID: 36264199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a protocol for maintaining viability while shipping organoid-derived retinal tissue.
    Singh RK; Winkler P; Binette F; Glickman RD; Seiler M; Petersen-Jones SM; Nasonkin IO
    J Tissue Eng Regen Med; 2020 Feb; 14(2):388-394. PubMed ID: 31908157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generating Kidney Organoids from Human Pluripotent Stem Cells Using Defined Conditions.
    Howden SE; Little MH
    Methods Mol Biol; 2020; 2155():183-192. PubMed ID: 32474877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generation of human colonic organoids from human pluripotent stem cells.
    Daoud A; Múnera JO
    Methods Cell Biol; 2020; 159():201-227. PubMed ID: 32586443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold.
    Samanta S; Ylä-Outinen L; Rangasami VK; Narkilahti S; Oommen OP
    Acta Biomater; 2022 Mar; 140():314-323. PubMed ID: 34902615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of a three-dimensional organoid model to explore early retinal phenotypes associated with Alzheimer's disease.
    Lavekar SS; Harkin J; Hernandez M; Gomes C; Patil S; Huang KC; Puntambekar SS; Lamb BT; Meyer JS
    Sci Rep; 2023 Aug; 13(1):13827. PubMed ID: 37620502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro.
    Ding B; Sun G; Liu S; Peng E; Wan M; Chen L; Jackson J; Atala A
    Cell Transplant; 2020; 29():963689719897066. PubMed ID: 32166969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease.
    Vieira de Sá R; Cañizares Luna M; Pasterkamp RJ
    Tissue Eng Part C Methods; 2021 Mar; 27(3):213-224. PubMed ID: 33446055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of cerebral organoids: a more qualified model for Alzheimer's disease research.
    Bi FC; Yang XH; Cheng XY; Deng WB; Guo XL; Yang H; Wang Y; Li J; Yao Y
    Transl Neurodegener; 2021 Aug; 10(1):27. PubMed ID: 34372927
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retinal organoids in disease modeling and drug discovery: Opportunities and challenges.
    Chakrabarty K; Nayak D; Debnath J; Das D; Shetty R; Ghosh A
    Surv Ophthalmol; 2024; 69(2):179-189. PubMed ID: 37778668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids.
    Barak M; Fedorova V; Pospisilova V; Raska J; Vochyanova S; Sedmik J; Hribkova H; Klimova H; Vanova T; Bohaciakova D
    Stem Cell Rev Rep; 2022 Feb; 18(2):792-820. PubMed ID: 35107767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generating Cerebral Organoids from Human Pluripotent Stem Cells.
    Chew L; Añonuevo A; Knock E
    Methods Mol Biol; 2022; 2389():177-199. PubMed ID: 34558011
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer's disease.
    Vazin T; Ball KA; Lu H; Park H; Ataeijannati Y; Head-Gordon T; Poo MM; Schaffer DV
    Neurobiol Dis; 2014 Feb; 62():62-72. PubMed ID: 24055772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Harnessing cerebral organoids for Alzheimer's disease research.
    Bubnys A; Tsai LH
    Curr Opin Neurobiol; 2022 Feb; 72():120-130. PubMed ID: 34818608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of human cerebral organoids with a structured outer subventricular zone.
    Walsh RM; Luongo R; Giacomelli E; Ciceri G; Rittenhouse C; Verrillo A; Galimberti M; Bocchi VD; Wu Y; Xu N; Mosole S; Muller J; Vezzoli E; Jungverdorben J; Zhou T; Barker RA; Cattaneo E; Studer L; Baggiolini A
    Cell Rep; 2024 Apr; 43(4):114031. PubMed ID: 38583153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer's disease associated phenotypes.
    Pavoni S; Jarray R; Nassor F; Guyot AC; Cottin S; Rontard J; Mikol J; Mabondzo A; Deslys JP; Yates F
    PLoS One; 2018; 13(12):e0209150. PubMed ID: 30557391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human Pluripotent Stem Cells as In Vitro Models of Neurodegenerative Diseases.
    Machairaki V
    Adv Exp Med Biol; 2020; 1195():93-94. PubMed ID: 32468463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modelling neurodegenerative disease using brain organoids.
    Wray S
    Semin Cell Dev Biol; 2021 Mar; 111():60-66. PubMed ID: 32513498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix.
    Okolicsanyi RK; Griffiths LR; Haupt LM
    Dev Biol; 2014 Apr; 388(1):1-10. PubMed ID: 24509075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.