These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30875801)

  • 1. Optimal Machining Strategy Selection in Ball-End Milling of Hardened Steels for Injection Molds.
    Buj-Corral I; Ortiz-Marzo JA; Costa-Herrero L; Vivancos-Calvet J; Luis-Pérez C
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30875801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Tool Cutting Edge Helix Angle on the Surface Roughness after Finish Milling of Magnesium Alloys.
    Zagórski I; Szczepaniak A; Kulisz M; Korpysa J
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Machining Parameters to Minimize Cutting Forces and Surface Roughness in Micro-Milling of Mg13Sn Alloy.
    Ercetin A; Aslantaş K; Özgün Ö; Perçin M; Chandrashekarappa MPG
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Experimental Investigation on Micro End Milling with High-Speed Up Cut Milling for Hardened Die Steel.
    Kino H; Imada T; Ogawa K; Nakagawa H; Kojima H
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Machinability Evolution in Asymmetric Milling of TC25 Ti Alloy Aiming at High Performance Machining.
    Song X; Zhang H
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Cutting Forces and Geometric Surface Structures in the Milling of NiTi Alloy.
    Kowalczyk M
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Face Milling of 42CrMo4 Steel: Influence of Entering Angle on the Measured Surface Roughness, Cutting Force and Vibration Amplitude.
    Płodzień M; Żyłka Ł; Sułkowicz P; Żak K; Wojciechowski S
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs.
    Abbas AT; Pimenov DY; Erdakov IN; Taha MA; Soliman MS; El Rayes MM
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface integrity optimization for ball-end hard milling of AISI D2 steel based on response surface methodology.
    Huang W; Wan C; Wang G; Zhang G
    PLoS One; 2023; 18(8):e0290760. PubMed ID: 37624830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machining forces in ultrasonic-vibration assisted end milling.
    Verma GC; Pandey PM
    Ultrasonics; 2019 Apr; 94():350-363. PubMed ID: 30029793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-response optimization of process parameters in nitrogen-containing gray cast iron milling process based on application of non-dominated ranking genetic algorithm.
    Lin Y; Ma J; Lai D; Zhang J; Li W; Li S; He S
    Heliyon; 2022 Nov; 8(11):e11629. PubMed ID: 36439750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Tools and Cutting Strategy on Milling Conditions and Quality of Horizontal Thin-Wall Structures of Titanium Alloy Ti
    Kurpiel S; Cudok B; Zagórski K; Cieślik J; Skrzypkowski K; Brostow W
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface roughness analysis of hardened steel after high-speed milling.
    Twardowski P; Wojciechowski S; Wieczorowski M; Mathia T
    Scanning; 2011; 33(5):386-95. PubMed ID: 21830224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a Micro-Lens Array Mold by Micro Ball End-Milling and Its Hot Embossing.
    Gao P; Liang Z; Wang X; Zhou T; Xie J; Li S; Shen W
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Roughness Analysis and Prediction with an Artificial Neural Network Model for Dry Milling of Co-Cr Biomedical Alloys.
    Dijmărescu MR; Abaza BF; Voiculescu I; Dijmărescu MC; Ciocan I
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Cutting Data and Tool Inclination Angles During Hard Milling with CBN Tools, Based on Force Predictions and Surface Roughness Measurements.
    Matras A; Zębala W
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32131406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Use of a Radial Basis Function Neural Network and Fuzzy Modelling in the Assessment of Surface Roughness in the MDF Milling Process.
    Szwajka K; Zielińska-Szwajka J; Trzepieciński T
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Cutting Parameters and Tool Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning of AISI 5140 Steel.
    Kuntoğlu M; Aslan A; Pimenov DY; Giasin K; Mikolajczyk T; Sharma S
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force Prediction and Cutting-Parameter Optimization in Micro-Milling Al7075-T6 Based on Response Surface Method.
    Zhou M; Chen Y; Zhang G
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32796514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MQL Strategies Applied in Ti-6Al-4V Alloy Milling-Comparative Analysis between Experimental Design and Artificial Neural Networks.
    Paschoalinoto NW; Batalha GF; Bordinassi EC; Ferrer JAG; Filho AFL; Ribeiro GLX; Cardoso C
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.