BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30876029)

  • 1. Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity.
    Dovzhenko D; Mochalov K; Vaskan I; Kryukova I; Rakovich Y; Nabiev I
    Opt Express; 2019 Feb; 27(4):4077-4089. PubMed ID: 30876029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates.
    Melnikau D; Esteban R; Savateeva D; Sánchez-Iglesias A; Grzelczak M; Schmidt MK; Liz-Marzán LM; Aizpurua J; Rakovich YP
    J Phys Chem Lett; 2016 Jan; 7(2):354-62. PubMed ID: 26726134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity.
    Slootsky M; Liu X; Menon VM; Forrest SR
    Phys Rev Lett; 2014 Feb; 112(7):076401. PubMed ID: 24579619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap.
    Jayaprakash R; Kalaitzakis FG; Christmann G; Tsagaraki K; Hocevar M; Gayral B; Monroy E; Pelekanos NT
    Sci Rep; 2017 Jul; 7(1):5542. PubMed ID: 28717162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
    Graf A; Tropf L; Zakharko Y; Zaumseil J; Gather MC
    Nat Commun; 2016 Oct; 7():13078. PubMed ID: 27721454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of microcavity polaritons in ZnO nanoparticles.
    Liu X; Goldberg D; Menon VM
    Opt Express; 2013 Sep; 21(18):20620-5. PubMed ID: 24103934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays.
    Winkler JM; Rabouw FT; Rossinelli AA; Jayanti SV; McPeak KM; Kim DK; le Feber B; Prins F; Norris DJ
    Nano Lett; 2019 Jan; 19(1):108-115. PubMed ID: 30516054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polariton-assisted manipulation of energy relaxation pathways: donor-acceptor role reversal in a tuneable microcavity.
    Dovzhenko D; Lednev M; Mochalov K; Vaskan I; Rakovich Y; Karaulov A; Nabiev I
    Chem Sci; 2021 Oct; 12(38):12794-12805. PubMed ID: 34703566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS
    Lepeshov S; Wang M; Krasnok A; Kotov O; Zhang T; Liu H; Jiang T; Korgel B; Terrones M; Zheng Y; Alú A
    ACS Appl Mater Interfaces; 2018 May; 10(19):16690-16697. PubMed ID: 29651843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite.
    Wang J; Su R; Xing J; Bao D; Diederichs C; Liu S; Liew TCH; Chen Z; Xiong Q
    ACS Nano; 2018 Aug; 12(8):8382-8389. PubMed ID: 30089200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Second-Order Nonlinearity for THz Generation by Resonant Interaction of Exciton-Polariton Rabi Oscillations with Optical Phonons.
    Rojan K; Léger Y; Morigi G; Richard M; Minguzzi A
    Phys Rev Lett; 2017 Sep; 119(12):127401. PubMed ID: 29341639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity.
    Heo J; Jahangir S; Xiao B; Bhattacharya P
    Nano Lett; 2013 Jun; 13(6):2376-80. PubMed ID: 23634649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing.
    Suchomel H; Kreutzer S; Jörg M; Brodbeck S; Pieczarka M; Betzold S; Dietrich CP; Sęk G; Schneider C; Höfling S
    Opt Express; 2017 Oct; 25(20):24816-24826. PubMed ID: 29041294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
    Graf A; Held M; Zakharko Y; Tropf L; Gather MC; Zaumseil J
    Nat Mater; 2017 Sep; 16(9):911-917. PubMed ID: 28714985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz radiation of microcavity dipolaritons.
    Seedhouse A; Wilkes J; Kulakovskii VD; Muljarov EA
    Opt Lett; 2019 Sep; 44(17):4339-4342. PubMed ID: 31465397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong coupling in mechanically flexible free-standing organic membranes.
    Georgiou K; Athanasiou M; Jayaprakash R; Lidzey DG; Itskos G; Othonos A
    J Chem Phys; 2023 Dec; 159(23):. PubMed ID: 38112504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polariton assisted photoemission from a layered molecular material: role of vibrational states and molecular absorption.
    Vasista AB; Menghrajani KS; Barnes WL
    Nanoscale; 2021 Sep; 13(34):14497-14505. PubMed ID: 34473173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity.
    Coles DM; Somaschi N; Michetti P; Clark C; Lagoudakis PG; Savvidis PG; Lidzey DG
    Nat Mater; 2014 Jul; 13(7):712-9. PubMed ID: 24793357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.