These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 30876134)

  • 41. The Structural and Electronic Properties of CdS/ZnS Core-Shell Nanowires.
    Zeng Y; Xing H; Huang Y; Fang Y; Lu A; Wang C; Xu X; Chen X
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5851-5. PubMed ID: 26369161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly Efficient Photoelectrochemical Water Splitting Using GaN-Nanowire Photoanode with Tungsten Sulfides.
    Han S; Noh S; Yu YT; Lee CR; Lee SK; Kim JS
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58028-58037. PubMed ID: 33337852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A facile approach for preparing densely-packed individual p-NiO/n-Fe
    Singh AK; Sarkar D
    Nanoscale; 2018 Jul; 10(27):13130-13139. PubMed ID: 29963674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quaternary Core-Shell Oxynitride Nanowire Photoanode Containing a Hole-Extraction Gradient for Photoelectrochemical Water Oxidation.
    Ma Z; Thersleff T; Görne AL; Cordes N; Liu Y; Jakobi S; Rokicinska A; Schichtl ZG; Coridan RH; Kustrowski P; Schnick W; Dronskowski R; Slabon A
    ACS Appl Mater Interfaces; 2019 May; 11(21):19077-19086. PubMed ID: 31067020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion.
    Ameen S; Akhtar MS; Song M; Shin HS
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4405-12. PubMed ID: 22827848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Core-shell cadmium sulphide @ silver sulphide nanowires surface architecture: Design towards photoelectrochemical solar cells.
    Mendhe AC; Majumder S; Nair N; Sankapal BR
    J Colloid Interface Sci; 2021 Apr; 587():715-726. PubMed ID: 33248697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting.
    Meng M; Wu X; Zhu X; Zhu X; Chu PK
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4081-8. PubMed ID: 24568166
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays.
    Huang X; Wang M; Willinger MG; Shao L; Su DS; Meng XM
    ACS Nano; 2012 Aug; 6(8):7333-9. PubMed ID: 22861378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modification of 1D TiO
    Tao JJ; Ma HP; Yuan KP; Gu Y; Lian JW; Li XX; Huang W; Nolan M; Lu HL; Zhang DW
    Nanoscale; 2020 Apr; 12(13):7159-7173. PubMed ID: 32193525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tuning the Carrier Transfer Behavior of Coaxial ZnO/ZnS/ZnIn
    Peng J; Liu G; Jiao X; Xia H; Li J; Ma Q; Jin J; Li F
    ChemSusChem; 2022 Dec; 15(23):e202201469. PubMed ID: 36136368
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible Perovskite-Based Solar Cells.
    Dymshits A; Iagher L; Etgar L
    Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications.
    Nandanapalli KR; Mudusu D; Yu JS; Lee S
    J Colloid Interface Sci; 2020 Jan; 558():9-20. PubMed ID: 31580955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability.
    Wang R; Li X; Wang L; Zhao X; Yang G; Li A; Wu C; Shen Q; Zhou Y; Zou Z
    Nanoscale; 2018 Nov; 10(41):19621-19627. PubMed ID: 30325386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoluminescence and photoconductivity of ZnS-coated ZnO nanowires.
    Bera A; Basak D
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):408-12. PubMed ID: 20356186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra rapid direct heating synthesis of ZnO nanorods with improved light trapping from stacked photoanodes for high efficiency photocatalytic water splitting.
    Lee WC; Fang Y; Commandeur D; Qian R; Al-Abdullah ZTY; Chen Q
    Nanotechnology; 2017 Sep; 28(35):355402. PubMed ID: 28660855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solar-driven hydrogen evolution using a CuInS2/CdS/ZnO heterostructure nanowire array as an efficient photoanode.
    Choi Y; Beak M; Yong K
    Nanoscale; 2014 Aug; 6(15):8914-8. PubMed ID: 24965525
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Performance Self-powered Photodetectors Based on ZnO/ZnS Core-Shell Nanorod Arrays.
    Lin H; Wei L; Wu C; Chen Y; Yan S; Mei L; Jiao J
    Nanoscale Res Lett; 2016 Dec; 11(1):420. PubMed ID: 27654280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Band Structure Engineering and Defect Passivation of Cu
    Guo H; Yang P; Hu J; Jiang A; Chen H; Niu X; Zhou Y
    ACS Omega; 2022 Mar; 7(11):9642-9651. PubMed ID: 35350365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformal zinc sulfide coating of vertically aligned ZnO nanorods by two-step hydrothermal synthesis on wide bandgap seed layers for lead-free perovskite solar cells.
    Farhad SFU; Tanvir NI; Bitu MNA; Hossain E; Mamun MA; Quddus MS; Alam MS; Moniruzzaman M; Nandigana P; Panda SK
    Nanotechnology; 2024 Jul; 35(38):. PubMed ID: 38838651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO-ZnS heterostructure nanocone photoanodes.
    Rouhi J; Mamat MH; Ooi CH; Mahmud S; Mahmood MR
    PLoS One; 2015; 10(4):e0123433. PubMed ID: 25875377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.