These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 30876293)

  • 1. Efficient optical trapping with cylindrical vector beams.
    Moradi H; Shahabadi V; Madadi E; Karimi E; Hajizadeh F
    Opt Express; 2019 Mar; 27(5):7266-7276. PubMed ID: 30876293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of gold nanoparticles by cylindrical vector beam.
    Huang L; Guo H; Li J; Ling L; Feng B; Li ZY
    Opt Lett; 2012 May; 37(10):1694-6. PubMed ID: 22627540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical manipulation using highly focused alternate radially and azimuthally polarized beams modulated by a devil's lens.
    Liu Z; Jones PH
    J Opt Soc Am A Opt Image Sci Vis; 2016 Dec; 33(12):2501-2508. PubMed ID: 27906277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2532-44. PubMed ID: 15119623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forces in optical tweezers with radially and azimuthally polarized trapping beams.
    Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Opt Lett; 2008 Jan; 33(2):122-4. PubMed ID: 18197212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2545-54. PubMed ID: 15119624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface.
    Zhang F; Yu H; Fang J; Zhang M; Chen S; Wang J; He A; Chen J
    Opt Express; 2016 Mar; 24(6):6656-64. PubMed ID: 27136854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams.
    Zhao Y; Zhou L; Jiang X; Zhu L; Shi Q
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing of high numerical aperture cylindrical-vector beams.
    Youngworth K; Brown T
    Opt Express; 2000 Jul; 7(2):77-87. PubMed ID: 19404372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.
    Man Z; Bai Z; Zhang S; Li J; Li X; Ge X; Zhang Y; Fu S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):1014-1020. PubMed ID: 29877346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-induced stiffness asymmetry of optical tweezers.
    Madadi E; Samadi A; Cheraghian M; Reihani SN
    Opt Lett; 2012 Sep; 37(17):3519-21. PubMed ID: 22940935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams.
    Xu HF; Zhou Y; Wu HW; Chen HJ; Sheng ZQ; Qu J
    Opt Express; 2018 Aug; 26(16):20076-20088. PubMed ID: 30119323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation.
    Chen J; Ng J; Liu S; Lin Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026607. PubMed ID: 19792272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A vector holographic optical trap.
    Bhebhe N; Williams PAC; Rosales-Guzmán C; Rodriguez-Fajardo V; Forbes A
    Sci Rep; 2018 Nov; 8(1):17387. PubMed ID: 30478346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magneto-optical-like effect in tight focusing of azimuthally polarized sine-Gaussian beams.
    Zhang W; Fu S; Man Z
    Opt Express; 2024 Mar; 32(7):11363-11376. PubMed ID: 38570985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight focusing properties and focal field tailoring of cylindrical vector beams generated from a linearly polarized coherent beam array.
    Zhang Y; Hou T; Chang H; Yu T; Chang Q; Jiang M; Ma P; Su R; Zhou P
    Opt Express; 2021 Feb; 29(4):5259-5269. PubMed ID: 33726065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focusing and propagation characteristics of radially polarized helical-conical Airy beams.
    Li Y; Sun F; Wang G; Yu M; Song B; Peng N; Gao X
    Appl Opt; 2020 Jun; 59(16):5058-5065. PubMed ID: 32543504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping volume control in optical tweezers using cylindrical vector beams.
    Skelton SE; Sergides M; Saija R; Iatì MA; Maragó OM; Jones PH
    Opt Lett; 2013 Jan; 38(1):28-30. PubMed ID: 23282827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.