BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30876314)

  • 1. Compact compound-eye imaging module based on the phase diffractive microlens array for biometric fingerprint capturing.
    Yang T; Liu YH; Mu Q; Zhu M; Pu D; Chen L; Huang W
    Opt Express; 2019 Mar; 27(5):7513-7522. PubMed ID: 30876314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimodal fingerprint capturing system based on compound-eye imaging module.
    Shogenji R; Kitamura Y; Yamada K; Miyatake S; Tanida J
    Appl Opt; 2004 Feb; 43(6):1355-9. PubMed ID: 15008541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera.
    Li L; Yi AY
    Appl Opt; 2012 Apr; 51(12):1843-52. PubMed ID: 22534888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect-Mimetic Imaging System Based on a Microlens Array Fabricated by a Patterned-Layer Integrating Soft Lithography Process.
    Seo M; Seo JM; Cho DD; Koo K
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29932163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband point-spread function engineering via a freeform diffractive microlens array.
    Majumder A; Meem M; Stewart R; Menon R
    Opt Express; 2022 Jan; 30(2):1967-1975. PubMed ID: 35209347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-optical artificial compound eyes.
    Duparré JW; Wippermann FC
    Bioinspir Biomim; 2006 Mar; 1(1):R1-16. PubMed ID: 17671298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and modeling of pulsed-laser three-dimensional imaging system inspired by compound and human hybrid eye.
    Cheng Y; Cao J; Zhang F; Hao Q
    Sci Rep; 2018 Nov; 8(1):17164. PubMed ID: 30464304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a dual-focus artificial compound eye with improved imaging based on modified microprinting and air-assisted deformation.
    Li J; Wang W; Fu Z; Zhu R; Huang Y
    Appl Opt; 2023 Apr; 62(10):D125-D130. PubMed ID: 37132777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures.
    Xie S; Wan X; Yang B; Zhang W; Wei X; Zhuang S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31096627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Compound Eye Systems and Their Application: A Review.
    Phan HL; Yi J; Bae J; Ko H; Lee S; Cho D; Seo JM; Koo KI
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution imaging with an achromatic multi-level diffractive microlens array.
    Banerji S; Meem M; Majumder A; Sensale-Rodriguez B; Menon R
    Opt Lett; 2020 Nov; 45(22):6158-6161. PubMed ID: 33186939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multispectral imaging using compact compound optics.
    Shogenji R; Kitamura Y; Yamada K; Miyatake S; Tanida J
    Opt Express; 2004 Apr; 12(8):1643-55. PubMed ID: 19474990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffractive lensless imaging with optimized Voronoi-Fresnel phase.
    Fu Q; Yan DM; Heidrich W
    Opt Express; 2022 Dec; 30(25):45807-45823. PubMed ID: 36522977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication of high refractive index glass microlens array by imprinting in conjunction with laser assisted rapid surface heating for high resolution confocal microscopy imaging.
    Kim T; Bin Mohd Zawawi MZ; Shin R; Kim D; Choi W; Park C; Kang S
    Opt Express; 2019 Jun; 27(13):18869-18882. PubMed ID: 31252822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput and controllable manufacturing of liquid crystal polymer planar microlens array for compact fingerprint imaging.
    Zhang XJ; Zhou X; Yang ZX; Zhang LX; Huang W; Chen L
    Opt Express; 2022 Jan; 30(2):3101-3112. PubMed ID: 35209436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long working range light field microscope with fast scanning multifocal liquid crystal microlens array.
    Hsieh PY; Chou PY; Lin HA; Chu CY; Huang CT; Chen CH; Qin Z; Corral MM; Javidi B; Huang YP
    Opt Express; 2018 Apr; 26(8):10981-10996. PubMed ID: 29716026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation.
    Yang B; Zhou J; Chen Q; Lei L; Wen K
    Opt Express; 2018 Oct; 26(22):28927-28937. PubMed ID: 30470062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact near-eye display system using a superlens-based microlens array magnifier.
    Park HS; Hoskinson R; Abdollahi H; Stoeber B
    Opt Express; 2015 Nov; 23(24):30618-33. PubMed ID: 26698694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of a high-resolution image on a compound-eye image-capturing system.
    Kitamura Y; Shogenji R; Yamada K; Miyatake S; Miyamoto M; Morimoto T; Masaki Y; Kondou N; Miyazaki D; Tanida J; Ichioka Y
    Appl Opt; 2004 Mar; 43(8):1719-27. PubMed ID: 15046176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls.
    Long Y; Song Z; Pan M; Tao C; Hong R; Dai B; Zhang D
    Opt Express; 2021 Apr; 29(8):12763-12771. PubMed ID: 33985026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.