These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30876314)

  • 21. Artificial apposition compound eye fabricated by micro-optics technology.
    Duparré J; Dannberg P; Schreiber P; Bräuer A; Tünnermann A
    Appl Opt; 2004 Aug; 43(22):4303-10. PubMed ID: 15298401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial compound eye zoom camera.
    Duparré J; Wippermann F; Dannberg P; Bräuer A
    Bioinspir Biomim; 2008 Dec; 3(4):046008. PubMed ID: 19029582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulated-responsive refractive-diffractive biological hydrogel micro-optical element enabling achromatism via femtosecond laser lithography.
    Li Q; Shi H; Xi S; Jiang J; Zhang L; Liu Y
    Opt Express; 2023 Aug; 31(18):29368-29379. PubMed ID: 37710738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.
    Hung TQ; Chin WH; Sun Y; Wolff A; Bang DD
    Biosens Bioelectron; 2017 Apr; 90():217-223. PubMed ID: 27902940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfabrication of Microlens by Timed-Development-and-Thermal-Reflow (TDTR) Process for Projection Lithography.
    Tan JY; Goh G; Kim J
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32156007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and optimization of microlens array based high resolution beam steering system.
    Akatay A; Urey H
    Opt Express; 2007 Apr; 15(8):4523-9. PubMed ID: 19532699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems.
    Jung H; Jeong KH
    Opt Express; 2009 Aug; 17(17):14761-6. PubMed ID: 19687953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compound liquid crystal microlens array with convergent and divergent functions.
    Kang S; Zhang X
    Appl Opt; 2016 Apr; 55(12):3333-8. PubMed ID: 27140107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An electrically tunable plenoptic camera using a liquid crystal microlens array.
    Lei Y; Tong Q; Zhang X; Sang H; Ji A; Xie C
    Rev Sci Instrum; 2015 May; 86(5):053101. PubMed ID: 26026508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Fabrication of a Three-Dimensional Artificial Compound Eye Using Two-Photon Polymerization.
    Lin J; Kan Y; Jing X; Lu M
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wide-angle and ultrathin camera module using a curved hexagonal microlens array and all spherical surfaces.
    Liang WL; Su GD
    Appl Opt; 2014 Oct; 53(29):H121-8. PubMed ID: 25322408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient gonio-imaging of optically variable devices by compound-eye image-capturing system.
    Akao Y; Shogenji R; Tsumura N; Yamaguchi M; Tanida J
    Opt Express; 2011 Feb; 19(4):3353-62. PubMed ID: 21369158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a low cost high precision three-layer 3D artificial compound eye.
    Zhang H; Li L; McCray DL; Scheiding S; Naples NJ; Gebhardt A; Risse S; Eberhardt R; Tünnermann A; Yi AY
    Opt Express; 2013 Sep; 21(19):22232-45. PubMed ID: 24104115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses.
    Zhang S; Zhou L; Xue C; Wang L
    Appl Opt; 2017 Sep; 56(26):7442-7449. PubMed ID: 29048067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thin wafer-level camera lenses inspired by insect compound eyes.
    Brückner A; Duparré J; Leitel R; Dannberg P; Bräuer A; Tünnermann A
    Opt Express; 2010 Nov; 18(24):24379-94. PubMed ID: 21164785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffractive microlens integrated into Nb(5)N(6) microbolometers for THz detection.
    Tu X; Kang L; Wan C; Xu L; Mao Q; Xiao P; Jia X; Dou W; Chen J; Wu P
    Opt Express; 2015 Jun; 23(11):13794-803. PubMed ID: 26072751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational imaging using lightweight diffractive-refractive optics.
    Peng Y; Fu Q; Amata H; Su S; Heide F; Heidrich W
    Opt Express; 2015 Nov; 23(24):31393-407. PubMed ID: 26698765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication.
    Wang MR; Su H
    Appl Opt; 1998 Nov; 37(32):7568-76. PubMed ID: 18301593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beam pen lithography based on focused laser diode beam with single microlens fabricated by excimer laser.
    Hasan MN; Lee YC
    Opt Express; 2015 Feb; 23(4):4494-505. PubMed ID: 25836486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method.
    Chang SI; Yoon JB
    Opt Express; 2004 Dec; 12(25):6366-71. PubMed ID: 19488283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.