These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30876337)

  • 1. Aberration-resistible topological charge determination of annular-shaped optical vortex beams using Shack-Hartmann wavefront sensor.
    Wang D; Huang H; Matsui Y; Tanaka H; Toyoda H; Inoue T; Liu H
    Opt Express; 2019 Mar; 27(5):7803-7821. PubMed ID: 30876337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor.
    Luo J; Huang H; Matsui Y; Toyoda H; Inoue T; Bai J
    Opt Express; 2015 Apr; 23(7):8706-19. PubMed ID: 25968709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices.
    Pandey AK; Larrieu T; Dovillaire G; Kazamias S; Guilbaud O
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.
    Murphy K; Burke D; Devaney N; Dainty C
    Opt Express; 2010 Jul; 18(15):15448-60. PubMed ID: 20720924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distorted wavefront detection of orbital angular momentum beams based on a Shack-Hartmann wavefront sensor.
    Lan B; Liu C; Tang A; Chen M; Rui D; Shen F; Xian H
    Opt Express; 2022 Aug; 30(17):30623-30629. PubMed ID: 36242162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical-vortex diagnostics via Fraunhofer slit diffraction with controllable wavefront curvature.
    Bekshaev A; Mikhaylovskaya L; Patil S; Kumar V; Singh RP
    J Opt Soc Am A Opt Image Sci Vis; 2020 May; 37(5):780-786. PubMed ID: 32400711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent Manipulation of Topological Charges and Polarization Patterns of Optical Vortices.
    Yang CH; Chen YD; Wu ST; Fuh AY
    Sci Rep; 2016 Aug; 6():31546. PubMed ID: 27526858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation Characteristics of Circular Airy Vortex Beams in a Uniaxial Crystal along the Optical Axis.
    Zheng G; Wu Q; He T; Zhang X
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipole influence on Shack-Hartmann vortex detection in scintillated beams.
    Chen M; Roux FS
    J Opt Soc Am A Opt Image Sci Vis; 2008 May; 25(5):1084-90. PubMed ID: 18451914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors.
    DuBose TB; Gardner DF; Watnik AT
    Opt Lett; 2020 Apr; 45(7):1699-1702. PubMed ID: 32235977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation matching method for high-precision position detection of optical vortex using Shack-Hartmann wavefront sensor.
    Huang C; Huang H; Toyoda H; Inoue T; Liu H
    Opt Express; 2012 Nov; 20(24):26099-109. PubMed ID: 23187465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.
    Zheng S; Wang J
    Sci Rep; 2017 Jan; 7():40781. PubMed ID: 28094325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor.
    López-Quesada C; Andilla J; Martín-Badosa E
    Appl Opt; 2009 Feb; 48(6):1084-90. PubMed ID: 23567567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring phase errors in the presence of scintillation.
    Crepp JR; Letchev SO; Potier SJ; Follansbee JH; Tusay NT
    Opt Express; 2020 Dec; 28(25):37721-37733. PubMed ID: 33379601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.
    Wu H; Sheng S; Huang Z; Zhao S; Wang H; Sun Z; Xu X
    Opt Express; 2013 Feb; 21(4):4005-16. PubMed ID: 23481935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singular beams based on tangential phase warp.
    Peters E; Funes G; Anguita JA
    Opt Lett; 2019 Aug; 44(15):3769-3772. PubMed ID: 31368964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.